128 research outputs found

    Enhanced Electron-Phonon Coupling and its Irrelevance to High Tc_{c} Superconductivity

    Full text link
    It is argued that the origin of the buckling of the CuO2_{2} planes in certain cuprates as well as the strong electron-phonon coupling of the B1gB_{1g} phonon is due to the electric field across the planes induced by atoms with different valence above and below. The magnitude of the electric field is deduced from new Raman results on YBa2_{2}Cu3_{3}O6+x_{6+x} and Bi2_{2}Sr2_{2}(Ca1−x_{1-x}Yx_{x})Cu2_{2}O8_{8} with different O and Y doping, respectively. In the latter case it is shown that the symmetry breaking by replacing Ca partially by Y enhances the coupling by an order of magnitude, while the superconducting TcT_c drops to about two third of its original value.Comment: 4 pages, 2 figures. This and other papers can be downloaded from http://gwis2.circ.gwu.edu/~tp

    Histochemical Investigation of the Modal Specificity of Taste

    Full text link
    The taste mechanism was investigated in a primate (Macaca mulatta). Based on the hypothesis that intracellular enzymes contribute to the transduction of tastes to electric impulses by taste cells, a histochemical survey of the activity of several enzymes was made on taste buds from regions of the mouth associated with sweet, salt, sour, and bitter tastes. Considerable differences were noted among the modalities, which confirmed the hypothesis. An exclusively bitter enzyme was identified.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66599/2/10.1177_00220345720510050601.pd

    Screened-interaction expansion for the Hubbard model and determination of the quantum Monte Carlo Fermi surface

    Full text link
    We develop a systematic self-consistent perturbative expansion for the self energy of Hubbard-like models. The interaction lines in the Feynman diagrams are dynamically screened by the charge fluctuations in the system. Although the formal expansion is exact-assuming that the model under the study is perturbative-only if diagrams to all orders are included, it is shown that for large-on-site-Coulomb-repulsion-U systems weak-coupling expansions to a few orders may already converge. We show that the screened interaction for the large-U system can be vanishingly small at a certain intermediate electron filling; and it is found that our approximation for the imaginary part of the one-particle self energy agrees well with the QMC results in the low energy scales at this particular filling. But, the usefulness of the approximation is hindered by the fact that it has the incorrect filling dependence when the filling deviates from this value. We also calculate the exact QMC Fermi surfaces for the two-dimensional (2-D) Hubbard model for several fillings. Our results near half filling show extreme violation of the concepts of the band theory; in fact, instead of growing, Fermi surface vanishes when doped toward the half-filled Mott-Hubbard insulator. Sufficiently away from half filling, noninteracting-like Fermi surfaces are recovered. These results combined with the Luttinger theorem might show that diagrammatic expansions for the nearly-half-filled Hubbard model are unlikely to be possible; however, the nonperturbative part of the solution seems to be less important as the filling gradually moves away from one half. Results for the 2-D one-band Hubbard model for several hole dopings are presented. Implications of this study for the high-temperature superconductors are also discussed.Comment: 11 pages, 12 eps figures embedded, REVTeX, submitted to Phys. Rev. B; (v2) minor revisions, scheduled for publication on November 1

    Density-Induced Breaking of Pairs in the Attractive Hubbard Model

    Full text link
    A conserving T-matrix approximation is applied to the two-dimensional attractive Hubbard model in the low-density regime. A set of self-consistent equations is solved in the real-frequency domain to avoid the analytic continuation procedure. By tuning the chemical potential the particle density was varied in the limits 0.01 < n < 0.18. For the value of the attractive potential U=8t the binding energy of pairs monotonically decreases with increasing n, from its zero-density limit 2.3t and vanishes at a critical density n=0.19. A pairing-induced pseudogap in the single-particle density of states is found at low densities and temperatures.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Carrier relaxation, pseudogap, and superconducting gap in high-Tc cuprates: A Raman scattering study

    Full text link
    We describe results of electronic Raman-scattering experiments in differently doped single crystals of Y-123 and Bi-2212. The comparison of AF insulating and metallic samples suggests that at least the low-energy part of the spectra originates predominantly from excitations of free carriers. We therefore propose an analysis of the data in terms of a memory function approach. Dynamical scattering rates and mass-enhancement factors for the carriers are obtained. In B2g symmetry the Raman data compare well to the results obtained from ordinary and optical transport. For underdoped materials the dc scattering rates in B1g symmetry become temperature independent and considerably larger than in B2g symmetry. This increasing anisotropy is accompanied by a loss of spectral weight in B2g symmetry in the range between the superconducting transition at Tc and a characteristic temperature T* of order room temperature which compares well with the pseudogap temperature found in other experiments. The energy range affected by the pseudogap is doping and temperature independent. The integrated spectral loss is approximately 25% in underdoped samples and becomes much weaker towards higher carrier concentration. In underdoped samples, superconductivity related features in the spectra can be observed only in B2g symmetry. The peak frequencies scale with Tc. We do not find a direct relation between the pseudogap and the superconducting gap.Comment: RevTeX, 21 pages, 24 gif figures. For PostScript with embedded eps figures, see http://www.wmi.badw-muenchen.de/~opel/k2.htm

    Raman study of carrier-overdoping effects on the gap in high-Tc superconducting cuprates

    Full text link
    Raman scattering in the heavily overdoped (Y,Ca)Ba_2Cu_3O_{7-d} (T_c = 65 K) and Bi_2Sr_2CaCu_2O_{8+d} (T_c = 55 K) crystals has been investigated. For the both crystals, the electronic pair-breaking peaks in the A_{1g} and B_{1g} polarizations were largely shifted to the low energies close to a half of 2Delta_0, Delta_0 being the maximum gap. It strongly suggests s-wave mixing into the d-wave superconducting order parameter and the consequent manifestation of the Coulomb screening effect in the B_{1g}-channel. Gradual mixing of s-wave component with overdoping is not due to the change of crystal structure symmetry but a generic feature in all high-T_c superconducting cuprates.Comment: 5 pages, 4 figures, to be published in Phys. Rev. B, Rapid communicaito

    A Consistent Picture of Electronic Raman Scattering and Infrared Conductivity in the Cuprates

    Full text link
    Calculations are presented for electronic Raman scattering and infrared conductivity in a dx2−y2d_{x^{2}-y^{2}} superconductor including the effects of elastic scattering via anisotropic impurities and inelastic spin-fluctuation scattering. A consistent description of experiments on optimally doped Bi-2212 is made possible by considering the effects of correlations on both inelastic and elastic scattering.Comment: 4 pages Revtex, 5 embedded eps file

    Electronic Raman Scattering in Nearly Antiferromagnetic Fermi Liquids

    Get PDF
    A theory of electronic Raman scattering in nearly antiferromagnetic Fermi liquids is constructed using the phenomenological electron-electron interaction introduced by Millis, Monien, and Pines. The role of "hot spots" and their resulting signatures in the channel dependent Raman spectra is highlighted, and different scaling regimes are addressed. The theory is compared to Raman spectra taken in the normal state of overdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta}, and it is shown that many features of the symmetry dependent spectra can be explained by the theory.Comment: 3 pages + 4 figures, SNS97 Conference Proceeding

    Anomalous Self-Energy Effects of the B_1g Phonon in Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 Films

    Full text link
    In Raman spectra of cuprate superconductors the gap shows up both directly, via a redistribution of the electronic background, the so-called "2Delta peaks", and indirectly, e.g. via the renormalization of phononic excitations. We use a model that allows us to study the redistribution and the related phonon self-energy effects simultaneously. We apply this model to the B_1g phonon of Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 films, where Pr or Ca substitution enables us to investigate under- and overdoped samples. While various self-energy effects can be explained by the strength and energy of the 2\Delta peaks, anomalies remain. We discuss possible origins of these anomalies.Comment: 6 pages including 4 figure

    Nonmonotonic d_{x^2-y^2} Superconducting Order Parameter in Nd_{2-x}Ce_xCuO_4

    Full text link
    Low energy polarized electronic Raman scattering of the electron doped superconductor Nd_1.85Ce_0.15CuO_4 (T_c=22 K) has revealed a nonmonotonic d_{x^2-y^2} superconducting order parameter. It has a maximum gap of 4.4 k_BT_c at Fermi surface intersections with antiferromagnetic Brillouin zone (the ``hot spots'') and a smaller gap of 3.3 k_BT_c at fermionic Brillouin zone boundaries. The gap enhancement in the vicinity of the ``hot spots'' emphasizes role of antiferromagnetic fluctuations and similarity in the origin of superconductivity for electron- and hole-doped cuprates.Comment: 4 pages, 4 figure
    • …
    corecore