996 research outputs found

    Turoctocog alfa pegol provides effective management for major and minor surgical procedures in patients across all age groups with severe haemophilia A:Full data set from the pathfinder 3 and 5 phase III trials

    Get PDF
    Introduction Turoctocog alfa pegol is a glycoPEGylated recombinant factor VIII (FVIII) with an extended half-life developed for prophylaxis, treatment of bleeds and perioperative management in patients with haemophilia A. Aim Evaluate the efficacy and safety of turoctocog alfa pegol treatment for major and minor surgeries in the pathfinder 3 and 5 phase III trials. Methods Adults/adolescents aged >= 12 years with severe haemophilia A (FVIII 80% during major surgery (pathfinder 3). The primary end point was haemostatic efficacy during surgery; secondary end points were blood loss, haemostatic effect postsurgery, consumption, transfusions, safety and health economics. Children (0-11 years) undergoing minor surgeries received 20-75 IU/kg turoctocog alfa pegol at Investigator's discretion (pathfinder 5). Results pathfinder 3 included 35 patients undergoing 49 major surgeries. Haemostasis was successful in 47/49 (95.9%) surgeries; two had moderate haemostatic responses. Median (mean) blood loss during major surgery was 75 (322.6) mL. Four bleeds were reported postsurgery; three were successfully treated with turoctocog alfa pegol (one was not evaluated). On the day of surgery, overall mean (median) dose was 75.5 (74.5) IU/kg and mean (median) number of doses was 1.7 (2.0). Five procedures required 11 transfusions on the day of surgery or days 1-6. No safety concerns or inhibitors were identified. Forty-five minor surgeries in 23 children were performed without complications. Conclusion Turoctocog alfa pegol was effective for perioperative haemostatic management of major and minor surgeries in patients across age groups with severe haemophilia A

    Case Report: Brainstem angiocentric glioma presenting in a toddler child–diagnostic and therapeutic challenges

    Get PDF
    Introduction: Angiocentric gliomas (AG) in brainstem location are exceedingly rare and might cause differential diagnostic problems and uncertainty regarding the best therapeutic approach. Hereby, we describe the clinicopathological findings in a brainstem AG presenting in a toddler child and review the literature.Case report: A 2-year-old boy presented with 5 weeks history of gait disturbances, frequent falls, left-sided torticollis and swallowing problems. MRI head showed a T2-hyperintense, partly exophytic mass lesion centred in the pontomedullary region, raising the possibility of diffuse midline glioma. The exophytic component was partially resected by suboccipital craniotomy, leaving intact the infiltrative component. Ventriculoperitoneal shunt was implanted due to postoperative hydrocephalus. Histological examination revealed a moderately cellular tumour consisted of bland glial cells infiltrating the brain parenchyma and radially arranged around the blood vessels. By immunohistochemistry, the tumour strongly expressed S100 and GFAP in addition to intense nestin positivity, while OLIG2 was negative in the perivascular tumour cells. DNA methylation array profiled the tumour as “methylation class diffuse astrocytoma, MYB or MYBL1-altered subtype B (infratentorial)” and an in-frame MYB::QKI fusion was identified by RNA sequencing, confirming the diagnosis of angiocentric glioma. The patient has been initially treated with angiogenesis inhibitor and mTOR inhibitor, and now he is receiving palliative vinblastine. He is clinically stable on 9 months follow-up.Conclusion: Brainstem AG may cause a diagnostic problem, and the surgical and oncological management is challenging due to unresectability and lack of response to conventional chemo-radiation. In the future, genetically-tailored therapies might improve the prognosis

    Carboxypeptidase-M is regulated by lipids and CSFs in macrophages and dendritic cells and expressed selectively in tissue granulomas and foam cells

    Get PDF
    Granulomatous inflammations, characterized by the presence of activated macrophages (MAs) forming epithelioid cell (EPC) clusters, are usually easy to recognize. However, in ambiguous cases the use of a MA marker that expresses selectively in EPCs may be needed. Here, we report that carboxypeptidase-M (CPM), a MA-differentiation marker, is preferentially induced in EPCs of all granuloma types studied, but not in resting MAs. As CPM is not expressed constitutively in MAs, this allows utilization of CPM-immunohistochemistry in diagnostics of minute granuloma detection when dense non-granulomatous MAs are also present. Despite this rule, hardly any detectable CPM was found in advanced/active tubercle caseous disease, albeit in early tuberculosis granuloma, MAs still expressed CPM. Indeed, in vitro both the CPM-protein and -mRNA became downregulated when MAs were infected with live mycobacteria. In vitro, MA-CPM transcript is neither induced remarkably by interferon-γ, known to cause classical MA activation, nor by IL-4, an alternative MA activator. Instead, CPM is selectively expressed in lipid-laden MAs, including the foam cells of atherosclerotic plaques, xanthomatous lesions and lipid pneumonias. By using serum, rich in lipids, and low-density lipoprotein (LDL) or VLDL, CPM upregulation could be reproduced in vitro in monocyte-derived MAs both at transcriptional and protein levels, and the increase is repressed under lipid-depleted conditions. The microarray analyses support the notion that CPM induction correlates with a robust progressive increase in CPM gene expression during monocyte to MA maturation and dendritic cell (DC) differentiation mediated by granulocyte–MA-colony-stimulating factor+IL-4. M-CSF alone also induced CPM. These results collectively indicate that CPM upregulation in MAs is preferentially associated with increased lipid uptake, and exposure to CSF, features of EPCs, also. Therefore, CPM-immunohistochemistry is useful for granuloma and foam MA detections in tissue sections. Furthermore, the present data offer CPM for the first time to be a novel marker and cellular player in lipid uptake and/or metabolism of MAs by promoting foam cell formation
    corecore