107 research outputs found

    Rediscovering vitamin D

    Get PDF
    Over the past 2 years there has been a radical change in standard clinical practice with respect to vitamin D. As a result of a growing body of knowledgeable physicians are assessing the vitamin D nutritional status of their patients and prescribing aggressive repletion regimens of a vitamin D supplement. The present paper summarizes some basic information about this essential nutrient and reviews some of the more recent data implicating vitamin D deficiency in disease etiology with an emphasis on cardiovascular disease and cancer. Finally a rational approach to the dosing of vitamin D in different patient populations is provided

    A phase II trial of the vitamin D analogue Seocalcitol (EB1089) in patients with inoperable pancreatic cancer

    Get PDF
    Inoperable cancer of the exocrine pancreas responds poorly to most conventional anti-cancer agents, and new agents are required to palliate this disease. Seocalcitol (EB1089), a vitamin D analogue, can inhibit growth, induce differentiation and induce apoptosis of cancer cell lines in vitro and can also inhibit growth of pancreatic cancer xenografts in vivo. Thirty-six patients with advanced pancreatic cancer received once daily oral treatment with seocalcitol with dose escalation every 2 weeks until hypercalcaemia occurred, following which patients continued with maintenance therapy. The most frequent toxicity was the anticipated dose-dependent hypercalcaemia, with most patients tolerating a dose of 10–15 μg per day in chronic administration. Fourteen patients completed at least 8 weeks of treatment and were evaluable for efficacy, whereas 22 patients were withdrawn prior to completing 8 weeks' treatment and in 20 of these patients withdrawal was due to clinical deterioration as a result of disease progression. No objective responses were observed, with five of 14 patients having stable disease in whom the duration of stable disease was 82–532 days (median=168 days). The time to treatment failure (n=36) ranged from 22 to 847 days, and with a median survival of approximately 100 days. Seocalcitol is well tolerated in pancreatic cancer but has no objective anti-tumour activity in advanced disease. Further studies are necessary to determine if this agent has any cytostatic activity in this malignancy in minimal disease states

    Human male gamete endocrinology: 1alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D3) regulates different aspects of human sperm biology and metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A wider biological role of 1alpha,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the active metabolite of vitamin D3, in tissues not primarily related to mineral metabolism was suggested. Recently, we evidenced the ultrastructural localization the 1,25(OH)2D3 receptor in the human sperm. However, the 1,25(OH)2D3 action in human male reproduction has not yet been clarified.</p> <p>Methods and Results</p> <p>By RT-PCR, Western blot and Immunofluorescence techniques, we demonstrated that human sperm expresses the 1,25(OH)2D3 receptor (VDR). Besides, 25(OH)D3-1 alpha-hydroxylase, evidenced by Western blot analysis, indicated that in sperm 1,25(OH)2D3 is locally produced, highlighting the potential for autocrine-paracrine responses. 1,25(OH)2D3 through VDR, increased intracellular Ca2+ levels, motility and acrosin activity revealing an unexpected significance of this hormone in the acquisition of fertilizing ability. In sperm, 1,25(OH)2D3 through VDR, reduces triglycerides content concomitantly to the increase of lipase activity. Rapid responses stimulated by 1,25(OH)2D3 have been observed on Akt, MAPK and GSK3 implying that this secosteroid is involved in different sperm signalling pathways.</p> <p>Conclusion</p> <p>Our data extended the role of 1,25(OH)2D3 beyond its conventional physiological actions, paving the way for novel therapeutic opportunities in the treatment of the male reproduction disorders.</p

    Protection from ultraviolet damage and photocarcinogenesis by vitamin d compounds

    Get PDF
    © Springer Nature Switzerland AG 2020. Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds

    The ins and outs of phosphate homeostasis

    No full text
    corecore