81 research outputs found

    Optimisation d'un système de chauffage dans une enceinte radiative à l'aide d'un algorithme génétique hybride

    No full text
    International audienceCette étude porte sur un problème d'optimisation qui consiste à chercher la distribution de puissance optimale attribuée aux éléments chauffants à l'intérieur d'une enceinte radiative afin d'obtenir un champ de température prédéfini sur une plaque en acier. L'utilisation des méthodes d'optimisations métaheuristiques telles que les Algorithmes Génétiques et la méthode du Recuit Simulé a permis d'obtenir des résultats acceptables pour ce problème. En combinant ces deux méthodes on aboutit à une méthode hybride qui garantit des solutions plus appréciables

    Pharmacogenomics of Cardiovascular Diseases: The Path to Precision Therapy

    Get PDF
    Cardiovascular diseases (CVD) represent a substantial global health burden, leading to significant morbidity and mortality rates. However, the efficacy and safety of CVD therapies are markedly influenced by individual variability in drug responses and adverse reactions, often attributable to genetic factors. This chapter discusses how pharmacogenomics impacts the safety and efficacy of cardiovascular therapies through advanced genetic testing methods, like genome-wide association studies, polygenic risk scores, and multi-omics analyses. Additionally, the chapter addresses challenges and future perspectives, with a focus on the role of artificial intelligence and machine learning in integrating pharmacogenomics and genotype-based personalized interventions into the routine CVD care to improve long-term health outcomes

    Diet, Genetics, and Disease: A Focus on the Middle East and North Africa Region

    Get PDF
    The Middle East and North Africa (MENA) region suffers a drastic change from a traditional diet to an industrialized diet. This has led to an unparalleled increase in the prevalence of chronic diseases. This review discusses the role of nutritional genomics, or the dietary signature, in these dietary and disease changes in the MENA. The diet-genetics-disease relation is discussed in detail. Selected disease categories in the MENA are discussed starting with a review of their epidemiology in the different MENA countries, followed by an examination of the known genetic factors that have been reported in the disease discussed, whether inside or outside the MENA. Several diet-genetics-disease relationships in the MENA may be contributing to the increased prevalence of civilization disorders of metabolism and micronutrient deficiencies. Future research in the field of nutritional genomics in the MENA is needed to better define these relationships

    Firmware implementation of a recurrent neural network for the computation of the energy deposited in the liquid argon calorimeter of the ATLAS experiment

    Full text link
    The ATLAS experiment measures the properties of particles that are products of proton-proton collisions at the LHC. The ATLAS detector will undergo a major upgrade before the high luminosity phase of the LHC. The ATLAS liquid argon calorimeter measures the energy of particles interacting electromagnetically in the detector. The readout electronics of this calorimeter will be replaced during the aforementioned ATLAS upgrade. The new electronic boards will be based on state-of-the-art field-programmable gate arrays (FPGA) from Intel allowing the implementation of neural networks embedded in firmware. Neural networks have been shown to outperform the current optimal filtering algorithms used to compute the energy deposited in the calorimeter. This article presents the implementation of a recurrent neural network (RNN) allowing the reconstruction of the energy deposited in the calorimeter on Stratix 10 FPGAs. The implementation in high level synthesis (HLS) language allowed fast prototyping but fell short of meeting the stringent requirements in terms of resource usage and latency. Further optimisations in Very High-Speed Integrated Circuit Hardware Description Language (VHDL) allowed fulfilment of the requirements of processing 384 channels per FPGA with a latency smaller than 125 ns.Comment: 13 pages, 8 figure

    Transcriptomic Alterations in Lung Adenocarcinoma Unveil New Mechanisms Targeted by the TBX2 Subfamily of Tumor Suppressor Genes

    Get PDF
    T-box (TBX) transcription factors are evolutionary conserved genes and master transcriptional regulators. In mammals, TBX2 subfamily (TBX2, TBX3, TBX4, and TBX5) genes are expressed in the developing lung bud and tracheae. Our group previously showed that the expression of TBX2 subfamily was significantly high in human normal lungs, but markedly suppressed in lung adenocarcinoma (LUAD). To further elucidate their role in LUAD pathogenesis, we first confirmed abundant expression of protein products of the four members by immunostaining in adult human normal lung tissues. We also found overall suppressed expression of these genes and their corresponding proteins in a panel of human LUAD cell lines. Transient over-expression of each of the genes in human (NCI-H1299), and mouse (MDA-F471) derived lung cancer cells was found to significantly inhibit growth and proliferation as well as induce apoptosis. Genome-wide transcriptomic analyses on NCI-H1299 cells, overexpressing TBX2 gene subfamily, unraveled novel regulatory pathways. These included, among others, inhibition of cell cycle progression but more importantly activation of the histone demethylase pathway. When using a pattern-matching algorithm, we showed that TBX's overexpression mimic molecular signatures from azacitidine treated NCI-H1299 cells which in turn are inversely correlated to expression profiles of both human and murine lung tumors relative to matched normal lung. In conclusion, we showed that the TBX2 subfamily genes play a critical tumor suppressor role in lung cancer pathogenesis through regulating its methylating pattern, making them putative candidates for epigenetic therapy in LUAD

    A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects

    Get PDF
    BACKGROUND: Ostium secundum atrial septal defects (ASDII) account for approximately 10% of all congenital heart defects (CHD) and mutations in cardiac transcription factors, including TBX20, were identified as an underlying cause for ASDII. However, very little is known about disease penetrance in families and functional consequences of inherited TBX20 mutations. METHODS: The coding region of TBX20 was directly sequenced in 170 ASDII patients. Functional consequences of one novel mutation were investigated by surface plasmon resonance, CD spectropolarymetry, fluorescence spectrophotometry, luciferase assay and chromatin immunoprecipitation. RESULTS: We found a novel mutation in a highly conserved residue in the T-box DNA-binding domain (I121M) segregating with CHD in a three generation kindred. Four mutation carriers revealed cardiac phenotypes in terms of cribriform ASDII, large patent foramen ovale or cardiac valve defects. Interestingly, tertiary hydrophobic interactions within the mutant TBX20 T-box were significantly altered leading to a more dynamic structure of the protein. Moreover, Tbx20-I121M resulted in a significantly enhanced transcriptional activity, which was further increased in the presence of co-transcription factors GATA4/5 and NKX2-5. Occupancy of DNA binding sites on target genes was also increased. CONCLUSIONS: We suggest that TBX20-I121M adopts a more fluid tertiary structure leading to enhanced interactions with cofactors and more stable transcriptional complexes on target DNA sequences. Our data, combined with that of others, suggest that human ASDII may be related to loss- as well as gain-of-function TBX20 mutations

    Reptilian Heart Development And The Molecular Basis Of Cardiac Chamber Evolution

    Get PDF
    The emergence of terrestrial life witnessed the need for more sophisticated circulatory systems. This has evolved in birds, mammals and crocodilians into complete septation of the heart into left and right sides, allowing separate pulmonary and systemic circulatory systems, a key requirement for the evolution of endothermy(1-3). However, the evolution of the amniote heart is poorly understood. Reptilian hearts have been the subject of debate in the context of the evolution of cardiac septation: do they possess a single ventricular chamber or two incompletely septated ventricles(4-7)? Here we examine heart development in the red-eared slider turtle, Trachemys scripta elegans (a chelonian), and the green anole, Anolis carolinensis (a squamate), focusing on gene expression in the developing ventricles. Both reptiles initially form a ventricular chamber that homogenously expresses the T-box transcription factor gene Tbx5. In contrast, in birds and mammals, Tbx5 is restricted to left ventricle precursors(8,9). In later stages, Tbx5 expression in the turtle (but not anole) heart is gradually restricted to a distinct left ventricle, forming a left-right gradient. This suggests that Tbx5 expression was refined during evolution to pattern the ventricles. In support of this hypothesis, we show that loss of Tbx5 in the mouse ventricle results in a single chamber lacking distinct identity, indicating a requirement for Tbx5 in septation. Importantly, misexpression of Tbx5 throughout the developing myocardium to mimic the reptilian expression pattern also results in a single mispatterned ventricular chamber lacking septation. Thus ventricular septation is established by a steep and correctly positioned Tbx5 gradient. Our findings provide a molecular mechanism for the evolution of the amniote ventricle, and support the concept that altered expression of developmental regulators is a key mechanism of vertebrate evolution

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030
    corecore