458 research outputs found

    Generating Accurate and Consistent Top-Of-Atmosphere Reflectance Products from the New Generation Geostationary Satellite Sensors

    Get PDF
    GeoNEX is a collaborative project by scientists from NASA, NOAA, JAXA, and other organizations around the world with the purpose of generating a suite of Earth-monitoring products using data streams from the latest geostationary (GEO) sensors including the GOES-16/17 ABI and the Himawari-8/9 AHI. An accurate and consistent top-of-atmosphere (TOA) reflectance product, in particular the bidirectional reflectance factor (BRF), is the starting point in the scientific processing chain. We describe the main considerations and corresponding algorithms in generating the GeoNEX TOA BRF product. First, a special advantage of geostationary data streams is their high temporal resolution (~10 minutes per full-disk scan), providing a key source of information for many downstream products. To fully utilize this high temporal frequency demands a high georegistration accuracy for every acquired image. Our analysis shows that there can be substantial georegistration uncertainties in both GOES and Himawari L1b data which we addressed by implementing a phase-based correction algorithm to remove residual errors. Second, geostationary sensors have distinct illumination-view geometry features in that the solar angle changes for every pixel. Therefore, to accurately derive a BRF requires a solar position algorithm and the estimation of the pixel-wise acquisition time within an uncertainty of 10 seconds. Third, we discuss the measures we adopted to check and correct residual radiometric calibration issues of individual sensors to enable time-series analysis as well as the cross calibration between different satellite sensors (including those from low-Earth orbit). Finally, we also explain the rationale for the choice of the global grid/tile system of the GeoNEX TOA BRF product

    GeoNEX: A Cloud Gateway for Near Real-time Processing of Geostationary Satellite Products

    Get PDF
    The emergence of a new generation of geostationary satellite sensors provides land andatmosphere monitoring capabilities similar to MODIS and VIIRS with far greater temporal resolution (5-15 minutes). However, processing such large volume, highly dynamic datasets requires computing capabilities that (1) better support data access and knowledge discovery for scientists; (2) provide resources to enable real-time processing for emergency response (wildfire, smoke, dust, etc.); and (3) provide reliable and scalable services for the broader user community. This paper presents an implementation of GeoNEX (Geostationary NASA-NOAA Earth Exchange) services that integrate scientific algorithms with Amazon Web Services (AWS) to provide near realtime monitoring (~5 minute latency) capability in a hybrid cloud-computing environment. It offers a user-friendly, manageable and extendable interface and benefits from the scalability provided by Amazon Web Services. Four use cases are presented to illustrate how to (1) search and access geostationary data; (2) configure computing infrastructure to enable near real-time processing; (3) disseminate and utilize research results, visualizations, and animations to concurrent users; and (4) use a Jupyter Notebook-like interface for data exploration and rapid prototyping. As an example of (3), the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) was implemented on GOES-16 and -17 data to produce an active fire map every 5 minutes over the conterminous US. Details of the implementation strategies, architectures, and challenges of the use cases are discussed

    Uncertainty Assessment of the NASA Earth Exchange Global Daily Downscaled Climate Projections (NEX-GDDP) Dataset

    Get PDF
    The NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset is comprised of downscaled climate projections that are derived from 21 General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 5 (CMIP5) and across two of the four greenhouse gas emissions scenarios (RCP4.5 and RCP8.5). Each of the climate projections includes daily maximum temperature, minimum temperature, and precipitation for the periods from 1950 through 2100 and the spatial resolution is 0.25 degrees (approximately 25 km by 25 km). The GDDP dataset has received warm welcome from the science community in conducting studies of climate change impacts at local to regional scales, but a comprehensive evaluation of its uncertainties is still missing. In this study, we apply the Perfect Model Experiment framework (Dixon et al. 2016) to quantify the key sources of uncertainties from the observational baseline dataset, the downscaling algorithm, and some intrinsic assumptions (e.g., the stationary assumption) inherent to the statistical downscaling techniques. We developed a set of metrics to evaluate downscaling errors resulted from bias-correction ("quantile-mapping"), spatial disaggregation, as well as the temporal-spatial non-stationarity of climate variability. Our results highlight the spatial disaggregation (or interpolation) errors, which dominate the overall uncertainties of the GDDP dataset, especially over heterogeneous and complex terrains (e.g., mountains and coastal area). In comparison, the temporal errors in the GDDP dataset tend to be more constrained. Our results also indicate that the downscaled daily precipitation also has relatively larger uncertainties than the temperature fields, reflecting the rather stochastic nature of precipitation in space. Therefore, our results provide insights in improving statistical downscaling algorithms and products in the future

    Open-String Actions and Noncommutativity Beyond the Large-B Limit

    Get PDF
    In the limit of large, constant B-field (the ``Seiberg-Witten limit''), the derivative expansion for open-superstring effective actions is naturally expressed in terms of the symmetric products *n. Here, we investigate corrections around the large-B limit, for Chern-Simons couplings on the brane and to quadratic order in gauge fields. We perform a boundary-state computation in the commutative theory, and compare it with the corresponding computation on the noncommutative side. These results are then used to examine the possible role of Wilson lines beyond the Seiberg-Witten limit. To quadratic order in fields, the entire tree-level amplitude is described by a metric-dependent deformation of the *2 product, which can be interpreted in terms of a deformed (non-associative) version of the Moyal * product.Comment: 30 pages, harvma

    Amazon rainforests green-up with sunlight in dry season

    Full text link
    Metabolism and phenology of Amazon rainforests significantly influence global dynamics of climate, carbon and water, but remain poorly understood. We analyzed Amazon vegetation phenology at multiple scales with Moderate Resolution Imaging Spectroradiometer (MODIS) satellite measurements from 2000 to 2005. MODIS Enhanced Vegetation Index (EVI, an index of canopy photosynthetic capacity) increased by 25% with sunlight during the dry season across Amazon forests, opposite to ecosystem model predictions that water limitation should cause dry season declines in forest canopy photosynthesis. In contrast to intact forests, areas converted to pasture showed dry-season declines in EVI-derived photosynthetic capacity, presumably because removal of deep-rooted forest trees reduced access to deep soil water. Local canopy photosynthesis measured from eddy flux towers in both a rainforest and forest conversion site confirm our interpretation of satellite data, and suggest that basin-wide carbon fluxes can be constrained by integrating remote sensing and local flux measurements

    The Sentinel-2 MSI Can Increase the Temporal Resolution of 30m Satellite-Derived LAI Estimates

    Get PDF
    The successful launch of the European Space Agency (ESA) Sentinel-2A (S2-A) on 23 June 2015 with its MultiSpectral Instrument (MSI) provides an important means to augment Earth-observation capabilities following the legacy of Landsat. After the three-month satellite commissioning campaign, the MSI onboard S-2A is performing very well (ESA, 2015). By 3 December 2015, the sensor data records have achieved provisional maturity status and have been accessed in level-1C Top-Of-Atmosphere (TOA) reflectance by the remote sensing community worldwide. Near-nadir observations by the MSI onboard S-2A and the Operational Land Imager (OLI) onboard Landsat 8 were collected during Simultaneous Nadir Overpasses as well as nearly coincident overpasses. This paper presents a processing chain using harmonized S-2A MSI and Landsat 8 OLI sensors to obtain increased temporal resolution in Leaf Area Index (LAI) estimates using the red-edge band B8A of MSI to replace the NIR band B08. Results demonstrate that LAI estimates from the MSI and OLI are comparable, and, given sufficient preprocessing for atmospheric correction and geometric rectification, can be used interchangeably to improve the frequency with which low LAI canopies can be monitored

    Asymmetric warming over coastal California and its impact on the premium wine industry

    Get PDF
    Climatic changes over coastal California from 1951 to 1997 may have benefited the premium wine industry, as seen in higher quality wines and larger grape yields. Observed temperature warming trends were asymmetric, with greatest warming at night and during spring. Warming was associated with large increases in eastern Pacific sea surface temperatures (SST) and amounts of atmospheric water vapor. Although the average annual temperature warming trend was modest (1.13°C/47 yr), there was a 20 d reduction in frost occurrence and a 65 d increase in frost-free growing season length. In the Napa and Sonoma valleys, warmer winter and spring temperatures advanced the start of the growing season by 18 to 24 d, and enhanced atmospheric water vapor resulted in a 7 % reduction in evaporative demand. Given the strong coupling between Pacific SSTs and the coastal California climate, and because regional-scale SSTs persist for 6 to 12 mo, additional research may allow the possibility of predicting vintage quantity and quality from previous winter conditions

    Mapping Regional Forest Evapotranspiration and Photosynthesis by Coupling Satellite Data with Ecosystem Simulation

    Get PDF
    Mapping Regional Forest Evapotranspiration and Photosynthesis by Coupling Satellite Data With Ecosystem Simulatio

    New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests

    Get PDF
    Assessing the seasonal patterns of the Amazon rainforests has been difficult because of the paucity of ground observations and persistent cloud cover over these forests obscuring optical remote sensing observations. Here, we use data from a new generation of geostationary satellites that carry the Advanced Baseline Imager (ABI) to study the Amazon canopy. ABI is similar to the widely used polar orbiting sensor, the Moderate Resolution Imaging Spectroradiometer (MODIS), but provides observations every 10–15 min. Our analysis of NDVI data collected over the Amazon during 2018–19 shows that ABI provides 21–35 times more cloud-free observations in a month than MODIS. The analyses show statistically significant changes in seasonality over 85% of Amazon forest pixels, an area about three times greater than previously reported using MODIS data. Though additional work is needed in converting the observed changes in seasonality into meaningful changes in canopy dynamics, our results highlight the potential of the new generation geostationary satellites to help us better understand tropical ecosystems, which has been a challenge with only polar orbiting satellites
    • …
    corecore