13 research outputs found
HIV-1 subtype C Nef-mediated SERINC5 down-regulation significantly contributes to overall Nef activity
BACKGROUND: Nef performs multiple cellular activities that enhance HIV-1 pathogenesis. The role of Nef-mediated down-regulation of the host restriction factor SERINC5 in HIV-1 pathogenesis is not well-defined. We aimed to investigate if SERINC5 down-regulation activity contributes to HIV-1 subtype C disease progression, to assess the relative contribution of this activity to overall Nef function, and to identify amino acids required for optimal activity. We measured the SERINC5 down-regulation activity of 106 subtype C Nef clones, isolated from individuals in early infection, for which the Nef activities of CD4 and HLA-I down-regulation as well as alteration of TCR signalling were previously measured. The relationship between SERINC5 down-regulation and markers of disease progression, and the relative contribution of SERINC5 down-regulation to a Nef fitness model-derived E value (a proxy for overall Nef fitness in vivo), were assessed. RESULTS: No overall relationship was found between SERINC5 down-regulation and viral load set point (p = 0.28) or rate of CD4+ T cell decline (p = 0.45). CD4 down-regulation (p = 0.02) and SERINC5 down-regulation (p = 0.003) were significant determinants of E values in univariate analyses, with the greatest relative contribution for SERINC5 down-regulation, and only SERINC5 down-regulation remained significant in the multivariate analysis (p = 0.003). Using a codon-by-codon analysis, several amino acids were significantly associated with increased (10I, 11V, 38D, 51T, 65D, 101V, 188H and, 191H) or decreased (10K, 38E, 65E, 135F, 173T, 176T and, 191R) SERINC5 down-regulation activity. Site-directed mutagenesis experiments of selected mutants confirmed a substantial reduction in SERINC5 down-regulation activity associated with the mutation 173T, while mutations 10K, 135F, and 176T were associated with more modest reductions in activity that were not statistically significant. CONCLUSIONS: These results suggest that SERINC5 down-regulation is a significant contributor to overall Nef function and identify potential genetic determinants of this Nef function that may have relevance for vaccines or therapeutics
No detectable differences in Nef-mediated downregulation of HLA-I and CD4 molecules among HIV-1 group M lineages circulating in Cameroon, where the pandemic originated
HIV-1 group M (HIV-1M) lineages downregulate HLA-I and CD4 expression via their Nef proteins. We hypothesized that these Nef functions may be partially responsible for the differences in prevalence of viruses from different lineages that co-circulate within an epidemic. Here, we characterized these two Nef activities in HIV-1M isolates from Cameroon, where multiple variants have been circulating since the pandemic’s origin. Single HIV-1 Nef clones from 234 HIV-1-ART naïve individuals living in remote villages and two cosmopolitan cities of Cameroon, sampled between 2000 and 2013, were isolated from plasma HIV RNA and analyzed for their capacity to downregulate HLA-I and CD4 molecules. We found that, despite a large degree of within- and inter- lineage variation, the ability of Nef to downregulate HLA-I was similar across these different viruses. Moreover, Nef-mediated CD4 downregulation activity was also well conserved across the different lineages found in Cameroon. In addition, we observed a trend towards higher HLA-I downregulation activity of viruses circulating in the cosmopolitan cities versus the remote villages, whereas the CD4 downregulation activities were similar across the two settings. Furthermore, we noted a significant decline of HLA-I downregulation activity from 2000 to 2013, providing additional evidence supporting the attenuation of the global HIV-1M population over time. Finally, we identified 18 amino acids associated with differential HLA-I downregulation and 13 amino acids associated with differential CD4 downregulation within the dominant CRF02_AG lineage. Our lack of observation of HIV lineage-related differences in Nef-mediated HLA-I and CD4 downregulation function suggests that these activities do not substantively influence the prevalence of different HIV-1M lineages in Cameroon
Prevalence and risk factors to HIV-infection amongst health care workers within public and private health facilities in Cameroon.
Introduction: This study aimed at assessing the prevalence of Human Immunodeficiency Virus (HIV) among health care workers (HCWs) and to evaluate some risks factors for HCWs. Methods: We conducted a cross sectional study amongst HCWs in public and private healthcare facilities within seven regions amongst the 10 found in Cameroon. We collected data from 446 HCWs within 150 healthcare facilities. We used questionnaires for interviews and biological sampling for HIV test. Results: HIV prevalence was 2.61% (95% CI: 1.32% - 4.61%) regardless of gender and age. HCWs in private health facilities were more infected compared to those in public health facilities 5.00% vs 1.40% (p = 0.028); OR = 3.7 (95% CI: 1.01-12.90). HCWs who had never screened for HIV had a high risk of being infected OR = 7.05 (95% CI: 2.05-24.47). 44.62% of HCWs reported to have been victim of an Accidental Exposure to Blood (AEB). Amongst them, 45.80% in public HF versus 32.1% in private HF reported to have received an HIV screening and Post Exposure Prophylaxis following this incident. 4.20% of HCW victim of AEB were HIV positive, and 36.40% of HCWs had appropriate capacity training for HIV patient care. Conclusion: Though the HIV prevalence in HCWs is lower than in the general population 2.61% vs 4.3%, there is a high risk of infection as we observed a relatively high percentage of AEB amongst HCWs with an HIV prevalence of 4.20%. There is thus, a need in strengthening the capacity and provide psychosocial support to HCWs
Sub-Saharan Africa preparedness and response to the COVID-19 pandemic : A perspective of early career African scientists
Emerging highly transmissible viral infections such as SARS-CoV-2 pose a significant global threat to human health and the economy. Since its first appearance in December 2019 in the city of Wuhan, Hubei province, China, SARS-CoV-2 infection has quickly spread across the globe, with the first case reported on the African continent, in Egypt on February 14 th, 2020. Although the global number of COVID-19 infections has increased exponentially since the beginning of the pandemic, the number of new infections and deaths recorded in African countries have been relatively modest, suggesting slower transmission dynamics of the virus on the continent, a lower case fatality rate, or simply a lack of testing or reliable data. Notably, there is no significant increase in unexplained pneumonias or deaths on the continent which could possibly indicate the effectiveness of interventions introduced by several African governments. However, there has not yet been a comprehensive assessment of sub-Saharan Africa's (SSA) preparedness and response to the COVID-19 pandemic that may have contributed to prevent an uncontrolled outbreak so far. As a group of early career scientists and the next generation of African scientific leaders with experience of working in medical and diverse health research fields in both SSA and resource-rich countries, we present a unique perspective on the current public health interventions to fight COVID-19 in Africa. Our perspective is based on extensive review of the available scientific publications, official technical reports and announcements released by governmental and non-governmental health organizations as well as from our personal experiences as workers on the COVID-19 battlefield in SSA. We documented public health interventions implemented in seven SSA countries including Uganda, Kenya, Rwanda, Cameroon, Zambia, South Africa and Botswana, the existing gaps and the important components of disease control that may strengthen SSA response to future outbreaks
Inflammatory profile of vertically HIV-1 infected adolescents receiving ART in Cameroon: a contribution toward optimal pediatric HIV control strategies
Antiretroviral therapy (ART) has improved the lifespan of people living with HIV. However, their immune system remains in a state of sustained activation/inflammation, which favors viral replication and depletion of helper T-cells with varying profiles according to ART-response. We herein sought to ascertain the inflammatory profile of adolescents living with perinatal HIV-1 infection (ALPHI) receiving ART in an African context. In this cross-sectional and comparative study among ART-experienced ALPHI in Yaoundé-Cameroon, HIV-1 RNA was measured by Abbott Real-time PCR; CD4 cells were enumerated using flow cytometry; serum cytokines were measured by ELISA; HIV-1 proviral DNA was genotyped by Sanger-sequencing; and archived drug resistance mutations (ADRMs) were interpreted using Stanford HIVdb.v9.0.1. Overall, 73 adolescents were enrolled (60 ALPHI and 13 HIV-1 negative peers) aged 15 (13-18) years; 60.00% were female. ART median duration was 92 (46-123) months; median viral load was 3.99 (3.17-4.66) RNA Log10 (copies)/mL and median CD4 count was 326 (201-654) cells/mm3. As compared to HIV-negative adolescents, TNFα was highly expressed among ALPHI (p<0.01). Following a virological response, inflammatory cytokines (IFNγ and IL-12), anti-inflammatory cytokines (IL-4 and IL-10) and inflammation-related cytokines (IL-6 and IL-1β) were highly expressed with viral suppression (VS) vs. virological failure (VF), while the chemokine CCL3 was highly expressed with VF (p<0.01). Regarding the immune response, the inflammatory cytokine TNFα was highly expressed in those that are immunocompetent (CD4≥500 cell/mm3) vs. immunocompromised (CD4<500 cell/mm3), p ≤ 0.01; while chemokine CCL2 was highly expressed in the immunocompromised (p<0.05). In the presence of ADRMs, IL-4 and CCL3 were highly expressed (p=0.027 and p=0.043 respectively). Among ART-experienced ALPHI in Cameroon, the TNFα cytokine was found to be an inflammatory marker of HIV infection; IFNγ, IL-1β, IL-6, and IL-12 are potential immunological markers of VS and targeting these cytokines in addition to antiretroviral drugs may improve management. Moreover, CCL3 and CCL2 are possible predictors of VF and/or being immunocompromised and could serve as surrogates of poor ART response
Inflammatory profile of vertically HIV-1 infected adolescents receiving ART in Cameroon: a contribution toward optimal pediatric HIV control strategies
Antiretroviral therapy (ART) has improved the lifespan of people living with HIV. However, their immune system remains in a state of sustained activation/inflammation, which favors viral replication and depletion of helper T-cells with varying profiles according to ART-response. We herein sought to ascertain the inflammatory profile of adolescents living with perinatal HIV-1 infection (ALPHI) receiving ART in an African context. In this cross-sectional and comparative study among ART-experienced ALPHI in Yaoundé-Cameroon, HIV-1 RNA was measured by Abbott Real-time PCR; CD4 cells were enumerated using flow cytometry; serum cytokines were measured by ELISA; HIV-1 proviral DNA was genotyped by Sanger-sequencing; and archived drug resistance mutations (ADRMs) were interpreted using Stanford HIVdb.v9.0.1. Overall, 73 adolescents were enrolled (60 ALPHI and 13 HIV-1 negative peers) aged 15 (13-18) years; 60.00% were female. ART median duration was 92 (46-123) months; median viral load was 3.99 (3.17-4.66) RNA Log10 (copies)/mL and median CD4 count was 326 (201-654) cells/mm3. As compared to HIV-negative adolescents, TNFα was highly expressed among ALPHI (p<0.01). Following a virological response, inflammatory cytokines (IFNγ and IL-12), anti-inflammatory cytokines (IL-4 and IL-10) and inflammation-related cytokines (IL-6 and IL-1β) were highly expressed with viral suppression (VS) vs. virological failure (VF), while the chemokine CCL3 was highly expressed with VF (p<0.01). Regarding the immune response, the inflammatory cytokine TNFα was highly expressed in those that are immunocompetent (CD4≥500 cell/mm3) vs. immunocompromised (CD4<500 cell/mm3), p ≤ 0.01; while chemokine CCL2 was highly expressed in the immunocompromised (p<0.05). In the presence of ADRMs, IL-4 and CCL3 were highly expressed (p=0.027 and p=0.043 respectively). Among ART-experienced ALPHI in Cameroon, the TNFα cytokine was found to be an inflammatory marker of HIV infection; IFNγ, IL-1β, IL-6, and IL-12 are potential immunological markers of VS and targeting these cytokines in addition to antiretroviral drugs may improve management. Moreover, CCL3 and CCL2 are possible predictors of VF and/or being immunocompromised and could serve as surrogates of poor ART response
Why publishing the Journal of Public Health in Africa
The population of sub-Saharan Africa faces global health challenges more than any other part of the world, bearing the brunt of tuberculosis, malaria and HIV/AIDS. This region already carries 24% of the global disease burden and the situation is made worst by the advent of noncommunicable diseases, such as coronary heart disease, hypertension, cancer and diabetes (just to name a few). Thus the need for African scientists to disseminate research data in order to alleviate the continent’s huge disease burden and help the frail health systems affected by poverty, underdevelopment, conflicts and poorly managed government agencies. In our opinion, the Journal of Public Health in Africa responds to the need for a communication system aimed at reaching the widest audience of professionals worldwide in a shorter time than traditional publishing [...
Why publishing the Journal of Public Health in Africa
The population of sub-Saharan Africa faces global health challenges more than any other part of the world, bearing the brunt of tuberculosis, malaria and HIV/AIDS. This region already carries 24% of the global disease burden and the situation is made worst by the advent of noncommunicable diseases, such as coronary heart disease, hypertension, cancer and diabetes (just to name a few). Thus the need for African scientists to disseminate research data in order to alleviate the continent’s huge disease burden and help the frail health systems affected by poverty, underdevelopment, conflicts and poorly managed government agencies. In our opinion, the Journal of Public Health in Africa responds to the need for a communication system aimed at reaching the widest audience of professionals worldwide in a shorter time than traditional publishing [...
Acquired HIV-1 Protease Conformational Flexibility Associated with Lopinavir Failure May Shape the Outcome of Darunavir Therapy after Antiretroviral Therapy Switch
Understanding the underlying molecular interaction during a therapy switch from lopinavir (LPV) to darunavir (DRV) is essential to achieve long-term virological suppression. We investigated the kinetic and structural characteristics of multidrug-resistant South African HIV-1 subtype C protease (HIV-1 PR) during therapy switch from LPV to DRV using enzyme activity and inhibition assay, fluorescence spectroscopy, and molecular dynamic simulation. The HIV-1 protease variants were from clinical isolates with a combination of drug resistance mutations; MUT-1 (M46I, I54V, V82A, and L10F), MUT-2 (M46I, I54V, L76V, V82A, L10F, and L33F), and MUT-3 (M46I, I54V, L76V, V82A, L90M, and F53L). Enzyme kinetics analysis shows an association between increased relative resistance to LPV and DRV with the progressive decrease in the mutant HIV-1 PR variants’ catalytic efficiency. A direct relationship between high-level resistance to LPV and intermediate resistance to DRV with intrinsic changes in the three-dimensional structure of the mutant HIV-1 PR as a function of the multidrug-resistance mutation was observed. In silico analysis attributed these structural adjustments to the multidrug-resistance mutations affecting the LPV and DRV binding landscape. Though DRV showed superiority to LPV, as a lower concentration was needed to inhibit the HIV-1 PR variants, the inherent structural changes resulting from mutations selected during LPV therapy may dynamically shape the DRV treatment outcome after the therapy switch
HIV-1 subtype C Nef-mediated SERINC5 down-regulation significantly contributes to overall Nef activity
Abstract
Background
Nef performs multiple cellular activities that enhance HIV-1 pathogenesis. The role of Nef-mediated down-regulation of the host restriction factor SERINC5 in HIV-1 pathogenesis is not well-defined. We aimed to investigate if SERINC5 down-regulation activity contributes to HIV-1 subtype C disease progression, to assess the relative contribution of this activity to overall Nef function, and to identify amino acids required for optimal activity. We measured the SERINC5 down-regulation activity of 106 subtype C Nef clones, isolated from individuals in early infection, for which the Nef activities of CD4 and HLA-I down-regulation as well as alteration of TCR signalling were previously measured. The relationship between SERINC5 down-regulation and markers of disease progression, and the relative contribution of SERINC5 down-regulation to a Nef fitness model-derived E value (a proxy for overall Nef fitness in vivo), were assessed.
Results
No overall relationship was found between SERINC5 down-regulation and viral load set point (p = 0.28) or rate of CD4+ T cell decline (p = 0.45). CD4 down-regulation (p = 0.02) and SERINC5 down-regulation (p = 0.003) were significant determinants of E values in univariate analyses, with the greatest relative contribution for SERINC5 down-regulation, and only SERINC5 down-regulation remained significant in the multivariate analysis (p = 0.003). Using a codon-by-codon analysis, several amino acids were significantly associated with increased (10I, 11V, 38D, 51T, 65D, 101V, 188H and, 191H) or decreased (10K, 38E, 65E, 135F, 173T, 176T and, 191R) SERINC5 down-regulation activity. Site-directed mutagenesis experiments of selected mutants confirmed a substantial reduction in SERINC5 down-regulation activity associated with the mutation 173T, while mutations 10K, 135F, and 176T were associated with more modest reductions in activity that were not statistically significant.
Conclusions
These results suggest that SERINC5 down-regulation is a significant contributor to overall Nef function and identify potential genetic determinants of this Nef function that may have relevance for vaccines or therapeutics