1,717 research outputs found

    Assessing Sandhill Crane Roosting Habitat along the Platte River, Nebraska

    Get PDF
    Each spring approximately 500,000 sandhill cranes and some endangered whooping cranes use the Central Platte River Valley in Nebraska as a staging habitat during their migration north to breeding and nesting grounds in Canada, Alaska, and the Siberian Arctic. Over the last century changes in the flow of the river have altered the river channels and the distribution of roost sites. USGS researchers studied linkages between water flow, sediment supply, channel morphology, and preferred sites for crane roosting. These results are useful for estimating crane populations and for providing resource managers with techniques to understand crane habitats

    The costs of non-training in chronic wounds : estimates through practice simulation

    Get PDF
    The high prevalence and incidence rates of chronic wounds represent high financial costs for patients, families, health services, and for society in general. Therefore, the proper training of health professionals engaged in the diagnosis and treatment of these wounds can have a very positive impact on the reduction of costs. As technology advances rapidly, the knowledge acquired at school soon becomes outdated, and only through lifelong learning can skills be constantly updated. Information and Communication Technologies play a decisive role in this field. We have prepared a cost estimate model of Non-Training, using a Simulator (Web Based System – e-fer) for the diagnosis and treatment of chronic wounds. The preliminary results show that the costs involved in the diagnosis and treatment of chronic wounds are markedly higher in health professionals with less specialized training

    CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney

    Get PDF
    Dendritic cells (DCs) interface innate and adaptive immunity in nonlymphoid organs; however, the exact distribution and types of DC within the kidney are not known. We utilized CX3CR1GFP/+ mice to characterize the anatomy and phenotype of tissue-resident CX3CR1+ DCs within normal kidney. Laser-scanning confocal microscopy revealed an extensive, contiguous network of stellate-shaped CX3CR1+ DCs throughout the interstitial and mesangial spaces of the entire kidney. Intravital microscopy of the superficial cortex showed stationary interstitial CX3CR1+ DCs that continually probe the surrounding tissue environment through dendrite extensions. Flow cytometry of renal CX3CR1+ DCs showed significant coexpression of CD11c and F4/80, high major histocompatibility complex class II and FcR expression, and immature costimulatory but competent phagocytic ability indicative of tissue-resident, immature DCs ready to respond to environment cues. Thus, within the renal parenchyma, there exists little immunological privilege from the surveillance provided by renal CX3CR1+ DCs, a major constituent of the heterogeneous mononuclear phagocyte system populating normal kidney

    Fluctuating Filaments I: Statistical Mechanics of Helices

    Full text link
    We examine the effects of thermal fluctuations on thin elastic filaments with non-circular cross-section and arbitrary spontaneous curvature and torsion. Analytical expressions for orientational correlation functions and for the persistence length of helices are derived, and it is found that this length varies non-monotonically with the strength of thermal fluctuations. In the weak fluctuation regime, the local helical structure is preserved and the statistical properties are dominated by long wavelength bending and torsion modes. As the amplitude of fluctuations is increased, the helix ``melts'' and all memory of intrinsic helical structure is lost. Spontaneous twist of the cross--section leads to resonant dependence of the persistence length on the twist rate.Comment: 5 figure

    Dirac gaugino as leptophilic dark matter

    Full text link
    We investigate the leptophilic properties of Dirac gauginos in an R--symmetric N=2 supersymmetric model with extended gauge and Higgs sectors. The annihilation of Dirac gauginos to leptons requires no chirality flip in the final states so that it is not suppressed as in the Majorana case. This implies that it can be sizable enough to explain the positron excess observed by the PAMELA experiment with moderate or no boost factors. When squark masses are heavy, the annihilation of Dirac gauginos to hadrons is controlled by their Higgsino fraction and is driven by the hZhZ and W+W−W^+W^- final states. Moreover, at variance with the Majorana case, Dirac gauginos with a non-vanishing higgsino fraction can also have a vector coupling with the ZZ gauge boson leading to a sizable spin--independent scattering cross section off nuclei. Saturating the current antiproton limit, we show that Dirac gauginos can leave a signal in direct detection experiments at the level of the sensitivity of dark matter searches at present and in the near future.Comment: 24 pages, 10 figures, typos corrected, final version published on JCA

    The role of intracoronary imaging in translational research

    Get PDF
    Abstract: Atherosclerotic cardiovascular disease is a key public health concern worldwide and leading cause of morbidity, mortality and health economic costs. Understanding atherosclerotic plaque microstructure in relation to molecular mechanisms that underpin its initiation and progression is needed to provide the best chance of combating this disease. Evolving vessel wall-based, endovascular coronary imaging modalities, including intravascular ultrasound (IVUS), optical coherence tomography (OCT) and near-infrared spectroscopy (NIRS), used in isolation or as hybrid modalities, have been advanced to allow comprehensive visualization of the pathological substrate of coronary atherosclerosis and accurately measure temporal changes in both the vessel wall and plaque characteristics. This has helped further our appreciation of the natural history of coronary artery disease (CAD) and the risk for major adverse cardiovascular events (MACE), evaluate the responsiveness to conventional and experimental therapeutic interventions, and assist in guiding percutaneous coronary intervention (PCI). Here we review the use of different imaging modalities for these purposes and the lessons they have provided thus far.Nicholas J. Montarello, Adam J. Nelson, Johan Verjans, Stephen J. Nicholls, Peter J. Psalti

    Management of multivessel coronary artery disease in patients with non-ST-elevation myocardial infarction: a complex path to precision medicine

    Get PDF
    Recent analyses suggest the incidence of acute coronary syndrome is declining in high- and middle-income countries. Despite this, overall rates of non-ST-elevation myocardial infarction (NSTEMI) continue to rise. Furthermore, NSTEMI is a greater contributor to mortality after hospital discharge than ST-elevation myocardial infarction (STEMI). Patients with NSTEMI are often older, comorbid and have a high likelihood of multivessel coronary artery disease (MVD), which is associated with worse clinical outcomes. Currently, optimal treatment strategies for MVD in NSTEMI are less well established than for STEMI or stable coronary artery disease. Specifically, in relation to percutaneous coronary intervention (PCI) there is a paucity of randomized, prospective data comparing multivessel and culprit lesion-only PCI. Given the heterogeneous pathological basis for NSTEMI with MVD, an approach of complete revascularization may not be appropriate or necessary in all patients. Recognizing this, this review summarizes the limited evidence base for the interventional management of non-culprit disease in NSTEMI by comparing culprit-only and multivessel PCI strategies. We then explore how a personalized, precise approach to investigation, therapy and follow up may be achieved based on patient-, disease- and lesion-specific factors.Angus A.W. Baumann, Aashka Mishra, Matthew I. Worthley, Adam J. Nelson and Peter J. Psalti

    Universality classes in nonequilibrium lattice systems

    Full text link
    This work is designed to overview our present knowledge about universality classes occurring in nonequilibrium systems defined on regular lattices. In the first section I summarize the most important critical exponents, relations and the field theoretical formalism used in the text. In the second section I briefly address the question of scaling behavior at first order phase transitions. In section three I review dynamical extensions of basic static classes, show the effect of mixing dynamics and the percolation behavior. The main body of this work is given in section four where genuine, dynamical universality classes specific to nonequilibrium systems are introduced. In section five I continue overviewing such nonequilibrium classes but in coupled, multi-component systems. Most of the known nonequilibrium transition classes are explored in low dimensions between active and absorbing states of reaction-diffusion type of systems. However by mapping they can be related to universal behavior of interface growth models, which I overview in section six. Finally in section seven I summarize families of absorbing state system classes, mean-field classes and give an outlook for further directions of research.Comment: Updated comprehensive review, 62 pages (two column), 29 figs included. Scheduled for publication in Reviews of Modern Physics in April 200

    Integration of genetics into a systems model of electrocardiographic traits using humanCVD BeadChip

    Get PDF
    <p>Background—Electrocardiographic traits are important, substantially heritable determinants of risk of arrhythmias and sudden cardiac death.</p> <p>Methods and Results—In this study, 3 population-based cohorts (n=10 526) genotyped with the Illumina HumanCVD Beadchip and 4 quantitative electrocardiographic traits (PR interval, QRS axis, QRS duration, and QTc interval) were evaluated for single-nucleotide polymorphism associations. Six gene regions contained single nucleotide polymorphisms associated with these traits at P<10−6, including SCN5A (PR interval and QRS duration), CAV1-CAV2 locus (PR interval), CDKN1A (QRS duration), NOS1AP, KCNH2, and KCNQ1 (QTc interval). Expression quantitative trait loci analyses of top associated single-nucleotide polymorphisms were undertaken in human heart and aortic tissues. NOS1AP, SCN5A, IGFBP3, CYP2C9, and CAV1 showed evidence of differential allelic expression. We modeled the effects of ion channel activity on electrocardiographic parameters, estimating the change in gene expression that would account for our observed associations, thus relating epidemiological observations and expression quantitative trait loci data to a systems model of the ECG.</p> <p>Conclusions—These association results replicate and refine the mapping of previous genome-wide association study findings for electrocardiographic traits, while the expression analysis and modeling approaches offer supporting evidence for a functional role of some of these loci in cardiac excitation/conduction.</p&gt

    QCD Corrections to K-Kbar Mixing in R-symmetric Supersymmetric Models

    Full text link
    The leading-log QCD corrections to K-Kbar mixing in R-symmetric supersymmetric models are computed using effective field theory techniques. The spectrum topology where the gluino is significantly heavier than the squarks is motivated and focused on. It is found that, like in the MSSM, QCD corrections can tighten the kaon mass difference bound by roughly a factor of three. CP violation is also briefly considered, where QCD corrections can constrain phases to be as much as a factor of ten smaller than the uncorrected value.Comment: 11 pages, 11 pdf-figures; updated acknowledgments and references, clarified relationship to Ref[17], clarified CP-violation sectio
    • 

    corecore