52,771 research outputs found

    FARM FINANCIAL STRUCTURE DECISIONS UNDER DIFFERENT INTERTEMPORAL RISK BEHAVIORAL CONSTRUCTS

    Get PDF
    An alternative unconstrained expected-utility maximization model of farm debt is developed using the location-scale parameter condition that incorporates the empirically validated hypotheses of decreasing absolute and constant relative risk aversion. Simulation-optimization results based on the old and new model versions provide interesting implications for various levels of risk aversion and initial equity investments.Risk and Uncertainty,

    Flow properties of a series of experimental thermoplastic polymides

    Get PDF
    The softening temperature to degradation temperature range of the polymers was about 440 to 650 K. All of the polymers retained small amounts of solvent as indicated by an increase in T(sub g) as the polymers were dried. The flow properties showed that all three polymers had very high apparent viscosities and would require high pressures and/or high temperatures and/or long times to obtain adequate flow in prepregging and molding. Although none was intended for such application, two of the polymers were combined with carbon fibers by solution prepregging. The prepregs were molded into laminates at temperatures and times, the selection of which was guided by the results from the flow measurements. These laminates had room temperature short beam shear strength similar to that of carbon fiber laminates with a thermosetting polyimide matrix. However, the strength had considerable scatter, and given the difficult processing, these polymides probably would not be suitable for continuous fiber composites

    Polynomial knot and link invariants from the virtual biquandle

    Get PDF
    The Alexander biquandle of a virtual knot or link is a module over a 2-variable Laurent polynomial ring which is an invariant of virtual knots and links. The elementary ideals of this module are then invariants of virtual isotopy which determine both the generalized Alexander polynomial (also known as the Sawollek polynomial) for virtual knots and the classical Alexander polynomial for classical knots. For a fixed monomial ordering <<, the Gr\"obner bases for these ideals are computable, comparable invariants which fully determine the elementary ideals and which generalize and unify the classical and generalized Alexander polynomials. We provide examples to illustrate the usefulness of these invariants and propose questions for future work.Comment: 12 pages; version 3 includes corrected figure

    Iron Emission in the z=6.4 Quasar SDSS J114816.64+525150.3

    Full text link
    We present near-infrared J and K-band spectra of the z = 6.4 quasar SDSS J114816.64+525150.3 obtained with the NIRSPEC spectrograph at the Keck-II telescope, covering the rest-frame spectral regions surrounding the C IV 1549 and Mg II 2800 emission lines. The iron emission blend at rest wavelength 2900-3000 A is clearly detected and its strength appears nearly indistinguishable from that of typical quasars at lower redshifts. The Fe II / Mg II ratio is also similar to values found for lower-redshift quasars, demonstrating that there is no strong evolution in Fe/alpha broad-line emission ratios even out to z=6.4. In the context of current models for iron enrichment from Type Ia supernovae, this implies that the SN Ia progenitor stars formed at z > 10. We apply the scaling relations of Vestergaard and of McLure & Jarvis to estimate the black hole mass from the widths of the C IV and Mg II emission lines and the ultraviolet continuum luminosity. The derived mass is in the range (2-6)x10^9 solar masses, with an additional uncertainty of a factor of 3 due to the intrinsic scatter in the scaling relations. This result is in agreement with the previous mass estimate of 3x10^9 solar masses by Willott, McLure, & Jarvis, and supports their conclusion that the quasar is radiating close to its Eddington luminosity.Comment: To appear in ApJ Letter

    A New Concept for Controlled Lifting Entry Flight Experiments

    Get PDF
    Feasibility of trajectory guidance and control concept for lifting configuration with roll modulatio

    Optimal aeroassisted orbital transfer with plane change using collocation and nonlinear programming

    Get PDF
    The fuel optimal control problem arising in the non-planar orbital transfer employing aeroassisted technology is addressed. The mission involves the transfer from high energy orbit (HEO) to low energy orbit (LEO) with orbital plane change. The basic strategy here is to employ a combination of propulsive maneuvers in space and aerodynamic maneuvers in the atmosphere. The basic sequence of events for the aeroassisted HEO to LEO transfer consists of three phases. In the first phase, the orbital transfer begins with a deorbit impulse at HEO which injects the vehicle into an elliptic transfer orbit with perigee inside the atmosphere. In the second phase, the vehicle is optimally controlled by lift and bank angle modulations to perform the desired orbital plane change and to satisfy heating constraints. Because of the energy loss during the turn, an impulse is required to initiate the third phase to boost the vehicle back to the desired LEO orbital altitude. The third impulse is then used to circularize the orbit at LEO. The problem is solved by a direct optimization technique which uses piecewise polynomial representation for the state and control variables and collocation to satisfy the differential equations. This technique converts the optimal control problem into a nonlinear programming problem which is solved numerically. Solutions were obtained for cases with and without heat constraints and for cases of different orbital inclination changes. The method appears to be more powerful and robust than other optimization methods. In addition, the method can handle complex dynamical constraints

    Localization transitions in non-Hermitian quantum mechanics

    Full text link
    We study the localization transitions which arise in both one and two dimensions when quantum mechanical particles described by a random Schr\"odinger equation are subjected to a constant imaginary vector potential. A path-integral formulation relates the transition to flux lines depinned from columnar defects by a transverse magnetic field in superconductors. The theory predicts that the transverse Meissner effect is accompanied by stretched exponential relaxation of the field into the bulk and a diverging penetration depth at the transition.Comment: 4 pages (latex) with 3 figures (epsf) embedded in the text using the style file epsf.st

    Excluded-Volume Effects in Tethered-Particle Experiments: Bead Size Matters

    Get PDF
    The tethered-particle method is a single-molecule technique that has been used to explore the dynamics of a variety of macromolecules of biological interest. We give a theoretical analysis of the particle motions in such experiments. Our analysis reveals that the proximity of the tethered bead to a nearby surface (the microscope slide) gives rise to a volume-exclusion effect, resulting in an entropic force on the molecule. This force stretches the molecule, changing its statistical properties. In particular, the proximity of bead and surface brings about intriguing scaling relations between key observables (statistical moments of the bead) and parameters such as the bead size and contour length of the molecule. We present both approximate analytic solutions and numerical results for these effects in both flexible and semiflexible tethers. Finally, our results give a precise, experimentally-testable prediction for the probability distribution of the distance between the polymer attachment point and the center of the mobile bead.Comment: 4 pages, 3 figure
    corecore