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Introduction 

 The unconstrained, expected utility maximization model of farm capital structure 

developed by Barry, Baker, and Sanint (BBS) and by Collins has yielded important 

theoretical and empirical insights in agricultural finance. The model produces clear, 

intuitively reasonable solutions and behavioral predictions.  For instance, its comparative 

static properties provide the basis for the risk-balancing concept while its extended 

versions have been used to evaluate the effects of several policy and farm-level factors on 

farm financial structure decisions. 

  The BBS model, however, contains one important exception to these reasonable 

behavioral predictions. The model predicts that optimal debt levels will decrease if initial 

wealth increases. This is a result of the underlying behavioral assumption of constant 

absolute risk aversion, which implies that investment in a risky asset is a constant 

function of wealth. When such investments are financed by initial equity and debt, this 

implies that increases in initial equity will cause one for one decreases in debt. 

 It appears that the constant absolute risk aversion behavioral hypothesis has 

caused several agricultural economics researchers to look for modifications of the BBS 

model that replace the coefficient of absolute risk aversion with the coefficient of relative 

risk aversion.  For example, Collins presents a model where the argument of the expected 

utility function is rate of return on wealth, and the risk aversion parameter is interpreted 

as the coefficient of relative risk aversion.  Although it is not clear, one reason for such a 

formulation may be the perceived need to replace the behavioral hypothesis of constant 

absolute risk aversion. 



 This paper presents an alternative formulation of the optimal debt model that 

replaces the behavioral hypothesis of constant absolute risk aversion, with the behavioral 

hypotheses of decreasing absolute risk aversion and constant relative risk aversion. The 

alternative behavioral specifications of the proposed model will be formulated using the 

results of Meyer on the general location-scale model of decision making under 

uncertainty.  Our new formulation retains the positive attributes of the BBS model, while 

eliminating the behavioral implications of constant absolute risk aversion. This study 

provides a theoretical justification for a constant relative risk aversion optimal debt model 

based on its greater empirical strength and more reasonable predictions of optimal farm 

debt decisions. It is also an example of a direct empirical application of Meyer’s general 

location-scale results. 

2. The Analytic Value of the BBS-Collins Model of Optimal Farm Leverage 

 As subsequent studies have shown, the comparative static properties of both the 

basic and extended versions of the BBS-Collins model of optimal farm leverage exhibit 

expected logically deduced relationships between optimal debt and exogenous variables 

that are empirically verified.  

2.1 Applications to Farm Finance Issues 

 The BBS model, developed as an extension of portfolio theory formulated in a 

mean-variance framework, was actually designed to establish links between farmers’ 

credit risks and their level of borrowing.  The model derives and compares expressions 

for optimal debt obtained under deterministic and risky borrowing conditions using the 

first order conditions (FOC) of an expected utility maximization problem. By expanding 

the concept of total risk to accommodate credit risks that arise from unexpected 



variations in the cost and availability of credit, the BBS study describes the influence of 

the lender’s credit rationing policies on the farmer’s leverage decisions.  As credit risks 

are introduced in the model, covariance relationships between asset returns and 

borrowing rates provide important insights into changes in optimal leverage levels under 

the two borrowing scenarios. 

 Collins’ model used deterministic borrowing rates to present an alternative 

theoretical validation of the hypothesized balancing of business and financial risks 

introduced in separate works of Gabriel and Baker, and Barry and Robison.  By totally 

differentiating the expression for optimal leverage, he showed that upward adjustments in 

the farm's financial leverage position may result when external shocks increase the 

margin between asset returns and borrowing rates by a greater percentage than the 

variance of asset returns.  Barry and Robison, applying an equilibrium analysis under risk 

to the capital structure decision problem of the firm, used the same deterministic, static 

model and the risk balancing concept to decompose possible responses of adjustments in 

the financial structure to changes in the determining variables into two components.  The 

income effect is determined by the decision-maker's risk attitude while changes in other 

parameter values determine the substitution effect.   

 Subsequent extensions of the BBS-Collins model were used to analyze a number 

of farm finance issues.  A theoretical construct developed by Featherstone, et al. shows 

that risk reducing and income-augmenting farm policies actually induce farmers to make 

optimal leverage adjustments that eventually affect the cumulative probability of earning 

very low rates of return on equity.  Farmers, instead of benefitting from increased 

welfare, are then faced with the prospect of losing part of their equity investments and 



ultimately going bankrupt.  Other applications of the model include the analyses of 

changes in optimal capital structure decisions as a result of capital gains deductions 

(Moss, Ford, Boggess), depreciation allowances, tax policy, investment tax credits and a 

partial-adjustment specification (Ahrendsen, Collender and Dixon; Jensen and 

Langemeier). 

2.2 Comparative Static Properties 

Optimal capital structure is defined by the solution to the model's FOC.  The 

optimal value of the choice variable, debt, is a function of the mean and variance of asset 

return, cost of borrowing, equity level and a risk aversion parameter.  A comparative 

static analysis of the model’s results supports logically deduced relationships between 

optimal debt and its determining factors.  Higher mean asset returns and optimal debt are 

positively related, thus, suggesting that higher profitability can induce the farmer to incur 

additional debt.  A greater amount of risk, represented by the variance measure, is 

associated with a lower optimal debt level.  The same inverse relationship is sustained in 

the case of the other variables.  Higher borrowing costs result in greater financial stress 

that discourages additional debt; and a more risk averse farmer avoids entering into 

financial contracts that could dilute his own claims on his farm's assets.  The inverse 

relationships in the case of the risk and risk aversion measures require the empirically 

reasonable condition that mean asset returns always exceed borrowing costs. 

The partial derivative that establishes the effect of changes in equity levels on the 

firm’s borrowing activity is consistent with the model’s underlying behavioral 

assumption of constant absolute risk aversion.  This risk behavior implies that the 

decision-maker maintains a constant amount of investments in risky assets even as the 



wealth position improves (Barry and Baker).  This yields a negative partial derivative of 

debt with respect to increases in the farm equity position because higher equity must be 

offset by downward adjustments in the liabilities side of the farm’s balance sheet. 

3. Behavioral Restrictions of the BBS Model 

 This section examines the model’s assumptions about preferences and the 

probability distribution of the random variable. Specifically, the assumptions of constant 

absolute risk aversion and normally distributed returns will be discussed. Consistent with 

Freund’s results, the BBS-Collins capital structure model (and its later versions) is 

formulated as a static mean variance representation of an expected utility maximization 

problem with normally distributed returns and a risk behavior exhibiting constant 

absolute and increasing relative risk aversion (CARA-IRRA).  The model’s objective 

function, as Freund suggested, is: 

  

where  E(U(W)) is the expected utility of final wealth, :w is the expected (or the mean) 

final wealth,   is the variance of final wealth and D is the coefficient of absolute 

risk aversion. 

        Applying results of Meyer and Sinn concerning the mean-standard deviation 

objective function derived from a general economic decision model satisfying the 

location and scale parameter condition, the above objective function has the following 

properties, given that E(U(W)) = V(F,:): 

i) Increasing in mean (V:= 1) 

ii) Decreasing in standard deviation (VF  = -DF) 

iii) Increasing slope (S(F,:) = -VF/V: = DF)  

iv) Concave objective function (V::=0, VFF=- -D and V:F
2=0) 
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Following Meyer, the partial derivatives of the slope characterize the function’s 

representation of risk preferences: 

 

    

  

The derivative with respect to :, equation 3.1, shows that the model exhibits constant 

absolute risk aversion.  And the derivative with respect to t, equation 3.2,  shows that the 

model exhibits increasing relative risk aversion.  

            On both theoretical and empirical planes, decreasing absolute risk aversion enjoys 

greater support than constant absolute risk aversion.  The intuitive appeal of the DARA 

behavior was presented in the original works of Arrow and Pratt, who introduced these 

intertemporal risk behavioral concepts. Since then, DARA behavior has been regarded as 

the normative concept.  Pratt argues that decision-makers would tend to “pay less for 

insurance against a given risk the greater their assets (p. 123)” while Arrow contends that 

a decision maker faced with increasing wealth would find it absurd to be more unwilling 

to take a fair bet involving a fixed amount. 

            In agriculture and other applied areas of economics, DARA behavior has gained 

stronger empirical support than alternatives. Saha, Shumay, and Talpaz (1994) and 

Chavas and Holt (1996) are recent studies that find DARA behavior by farmers. The 

econometric analyses employed by other studies also indicate that measures of risk 

aversion vary inversely with land under control, off-farm income (Moscardi and de 

Janvry, Young, et al), and net worth (Patrick, Whitaker and Blake), thus, lending more 

support to DARA behavior. 
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            Furthermore, the assumption that the argument of the utility function is normally 

distributed may not be supported by the data used in applications of the optimal debt 

model. The argument of the objective function in the decision model is a linear 

transformation of the random variable, rate of return on assets or equity.  Since linear 

transformations preserve normality and are invertible, normality of the argument of the 

objective function can be tested by testing normality of the rate of return.  If the rate of 

return is not normally distributed, then the argument of the utility function is not 

normally distributed, violating the assumptions of the Freund derivation. 

            To examine this assumption we conducted a test of normality of the rate of return 

on equity in agriculture.  The data on rate of return is drawn from a sample of 94 Illinois 

farms for the years 1987 to 1996.  The rate of return on equity is calculated by dividing 

net farm income from operations (net of unpaid labor charges for the farm operator and 

family) by average farm equity.  Summary statistics for the rate of return are presented in 

Table 1.  The mean rate of return ranges between 0.016 and 0.16, and the standard 

deviation of the rate of return ranges between 0.09 and 0.30. 

          The test of normality is conducted on each of the annual cross sections of rate of 

return.  This assumes that each year’s distribution of the rate of return can be estimated 

from the realized cross section of rates of return in that year.  The cross sectional 

variation is caused by inherent individual differences and differential responses to shocks 

in the given year.  The mean rate of return across individuals is used as an estimate of the 

expected rate of return in a given year.  And the sample standard deviation is used as an 

estimate of the standard deviation.  This is consistent with some empirical applications of 

the optimal debt model (Parcell, Featherstone, and Barton). 

            Table 1 reveals that 1988, 1991, and 1995 were years of low average rates of 

return for the sample.  And 1987, 1989, and 1992 were the years with the three highest 



expected rates of return.  The standard deviation is between one and two times the 

expected returns in each year, yielding a coefficient of variation that ranges from one to 

two. 

            The rate of return for each year was tested for normality with the test statistic: 

  

 

where ei is the centered and scaled value of the rate of return and n is 94 – the number of 

farms in the sample.  Equation 3.3 is a slightly modified form of the Jarque-Bera test for 

normality (Davidson and MacKinnon, p. 596).  The computed test statistics and their 

associated p-values are presented in Table 2.  In every case the null hypothesis of 

normality is strongly rejected.  The weakest rejection occurs in 1991 where the p-value is 

0.027.  This is strong evidence that cross sectional rates of return are not distributed as 

normal random variables. 

 4.  A DARA-CRRA Alternative for General Distribution of Returns 

            This section describes the development of an alternative mean, standard deviation 

objective function that exhibits constant relative risk aversion (and therefore, decreasing 

absolute risk aversion), and is consistent with expected utility maximization under 

general probability distributions for the rate of return on assets.  The alternative 

functional form is derived by applying the location-scale condition identified by Meyer 

and Sinn.  The location-scale condition applies to the model of optimal debt because of 

the way the choice of debt and the random rate of return on assets interact to determine 

final equity, the argument of the expected utility function. 
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4.1  Application of the Location-Scale Condition 

            The problem of choosing an optimal level of debt given a known interest rate on  

debt and an uncertain rate of return on assets is analyzed here.  The random argument of 

the utility function is: 

 

where is w final wealth, E is initial wealth or equity, r is the random rate of return on 

assets, A is total assets, i is the known interest rate on debt, and D is the chosen level of 

debt.  Assets are financed with initial equity and debt, so: 

  A = E + D. 

Substituting, the random component of the argument of the utility function can be written 

as: 

   

Given the functional interaction between the underlying source of randomness, r , and the 

choice variable, D, this argument of the utility function satisfies the location-scale 

condition. 

            The location-scale condition can be verified by writing w , the random component 

of the argument of the utility function, as: , where: 

 

 

In order to reparameterize the argument of the utility function, first define the mean and 

standard deviation: 
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where :r is the mean rate of return on assets and Fr is the standard deviation of the rate of 

return on assets.  This implies: 

  

which is the centered and scaled rate of return on assets.  This implies: 

  

Thus, the optimal debt decision problem satisfies the location-scale condition.  It can be 

shown that the location-scale condition also applies to the decision problem that treats the 

interest rate on debt as a random variable. 

 Results of Meyer and Sinn can be applied to write the decision problem as: 

choose the level of debt, D, to maximize V(F,:), where F and : are defined as above, and 

V satisfies conditions derived by Meyer and Sinn.  The properties of V will be discussed 

in more detail in the following sections that derive an acceptable functional form for V. 

4.2 The Behavioral Hypotheses of Decreasing Absolute Risk Aversion and 

Constant Relative Risk Aversion 

The original derivation of the BBS optimal debt model used results of Freund to justify 

the mean-variance functional form.  As described above, this justification carries with it 

the implicit assumptions of constant absolute risk aversion and normal returns. Constant 

absolute risk aversion might be an acceptable behavioral hypothesis for a small class of 

decision-makers who have common wealth levels.  In this case, it would serve as an 
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approximation.  But anytime the model is applied to decision-makers with significant 

differences in initial wealth, constant absolute risk aversion should be replaced by 

decreasing absolute risk aversion.  Differences in initial wealth should cause significant 

differences in the willingness of decision-makers to undertake risky investments of a 

given size.  Frequently, decreasing absolute risk aversion is introduced by assuming 

constant relative risk aversion.  The implication of decreasing absolute risk aversion is 

one of the values of the behavioral hypothesis of constant relative risk aversion. 

Another reason the hypothesis of constant relative risk aversion is desirable is that such 

functions exhibit risk vulnerability.  The idea of risk vulnerability is: “... that adding an 

unfair background risk to wealth makes risk-averse individuals behave in a more risk-

averse way with respect to another independent risk.”  (Gollier and Pratt, p.1110) An 

unfair risk is a risk with a non-positive expected value. One important implication of risk 

vulnerability is that opening new insurance or contingent claim markets should stimulate 

economic activity in other risky markets.  Risk vulnerability is a desirable behavioral 

hypothesis.  And utility functions with the property that absolute risk aversion is 

decreasing and convex are risk vulnerable (Gollier and Pratt, p.1117).  Thus, constant 

relative risk aversion utility functions have the desirable properties of risk vulnerability, 

and decreasing absolute risk aversion. 

4.3 A Constant Relative Risk Aversion Mean-Variance Objective Function 

 This research presents a functional form for V that satisfies the properties defined 

by Meyer and Sinn, exhibits constant relative risk aversion, and produces a unique 

optimal level of debt in the optimal leverage problem. The functional form was found by 



searching over candidate homogeneous functions and examining the behavior of the 

optimal solution to the farm leverage problem. 

 An acceptable functional form must exhibit the following four properties of 

V(F,:) defined by Meyer and Sinn: 1) V: $ 0 ;     2) VF # 0 ;     3) V(F,:) concave in 

(F,:); and 4)  V(F,:) is homogenous in (F,:).   

 Concavity is used as a search criterion, even though the weaker property of quasi-

concavity is what the function must satisfy. The stronger property is used because it is 

easier to verify. This is consistent with Meyer, who wrote: “Since V(F,:) is the 

representation of ordinal preferences, it is obvious that its quasi-concavity is the relevant 

property to discuss in order to establish convexity of preferences in (F,:) space. On the 

other hand, there are those who have addressed the question of which V(F,:) functions 

can arise, ... That is, which V(F,:) arise directly from an EU calculation. For this latter 

question, the fact that V(F,:) is concave under appropriate conditions is an important one 

to be cognizant of.” (Meyer, 1987, pp.424-425)  

 The homogeneity property is imposed to create a function that exhibits constant 

relative risk aversion. The homogeneity can be of any degree because the aspect that is 

needed for constant relative risk aversion is a common factorization of t from VF and V: 

as Meyer’s results have shown:  
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 The combination of these properties imposes limits on the search. Degrees of 

homogeneity greater than 1 are ruled out because they are inconsistent with concavity.  

That is, if doubling (F,:) more than doubles the value of V, then V is not concave in 

(F,:). This means that candidate functions should be homogeneous of degree one or less. 

Further, if V(F,:) is homogeneous of degree one, then the Hessian of V is singular, 

implying weak concavity of V, which further implies that preferences in (F,:) space are 

weakly convex. This severely restricts the representation of aversion toward risk. Also, 

homogeneity of degree zero of V(F,:) should be ruled out because it implies that S(F,:) 

= -VF/V: = :/F by Euler’s theorem. This slope can not be consistent with expected utility 

maximization because it implies increasing absolute risk aversion and constant relative 

risk aversion by the results of Meyer. Thus, search should be focused on functions that 

are negatively homogeneous.  

 By the definition of V(F,:) in equation (1) of Meyer (1978, p.423) the function 

should be defined by: 

              (4.7) 

 

where D is the coefficient of relative risk aversion, and F(x) is the cumulative distribution 

function (cdf) of a scaled and centered random variable. Direct solution for V with 

candidate cumulative distribution functions does not yield functional forms that are 

sufficiently tractable. For example, if you assume that F is the cdf of a uniform random 

variable with mean 0 and variance 1, then the solution for V is: 
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This is a rather unrealistic example because it requires that the support of the rate of 

return on assets be  , but it provides one of the simpler closed form 

solutions for V.  

 An alternative approach is to choose a functional form for V and solve for a 

corresponding F. This requires solution of a complicated functional equation which may 

have no solution, one solution, or multiple solutions. Given the dependence of the 

resulting V function on the corresponding cdf F, neither of these approaches would yield 

a general solution that represents constant relative risk aversion preferences over a range 

of asset rate of return cdf’s. 

 Therefore, a tractable approach to the problem is to choose a  functional form for 

V with the required properties, and treat it as an approximation to the true but unknown V 

that is derived from a particular cdf F. A functional form for V that satisfies these criteria 

is given by: 

                        (4.9) 

 

where 8 is a constant that is related to the coefficient of relative risk aversion. This 

function satisfies the properties: 1) V:$0; 2) VF#0; 3) V concave in (F,:); and 4) V 

homogeneous of degree negative 2 in (F,:). Further verification of the usefulness of this 

function requires an examination of the optimal leverage solutions that it produces, which 

will be presented in section 5. 
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5.  Analysis of a Representative Grain Farm 

 Further evidence of the analytic value of the CRRA mean-standard deviation 

function is provided by a numerical optimization analysis of a representative grain farm. 

The analysis uses both the CRRA mean-standard deviation function and the CARA 

mean-standard deviation function to illustrate different responses of key farm decision 

variables to a change in the farmer’s intertemporal risk behavior. 

A representative farm is created using average resource endowments, operating 

levels and financial conditions of about 1,004 grain farms in the North Central Region 

that participate under Illinois’ Farm Business Farm Management (FBFM) Program.  This 

farm, managed by a 49 year-old farmer belonging to a family of three,  produces corn and 

soybeans in a 50/50 rotation, operates a total of 862 tillable acres of farmland, of which 

250 are owned and the remainder covered by a leasing contract. 

 The fair market value of the farm’s assets is $1.02 Million as of year-end of 1998, 

including $209,253 worth of farm equipment and farm real estate property valued at 

$376,496.  These assets were financed by 28% debt and 72% farm equity.  The family’s 

annual withdrawals from equity for family living expenses amount to $31,729, excluding 

income taxes. 

Using the financial and structural attributes of the representative farm as a starting 

point, this analysis assumes a two-year planning horizon and considers final wealth as the 

outcome variable that is determined by the value of farmland, farm equipment and ending 

cash balance, net of deductions for outstanding loan balances, at the end of the planning 

horizon.  This analytical framework is based on previous multi-period programming 

models (Barry and Willmann 1976) (Gwinn, Barry and Ellinger 1992). A large matrix of 



activities and constraints is developed where sub-matrices along the main diagonal 

elements correspond to time periods and off-diagonal elements represent transfers among 

the model’s activities.  The representative farm in this analysis is assumed to engage in 

production and marketing, land and machinery investments, cash renting of farmland, 

liquidity management, consumption, taxation and incurring short-, intermediate- and 

long-term loans. Financing and operating decisions are constrained by limits set on land 

availability, machinery requirements, consumption, and borrowing levels.  Specifically, 

borrowing decisions are constrained by the level of unused portion of the farm’s credit 

reserves, which is the amount that lenders are still willing to lend to the farm given 

existing financial obligations and operating conditions.  The level of credit reserves are 

calculated from liquidity changes in the balance sheet, expected income, changes in 

outstanding loan levels, and changes in asset values (Gwinn, Barry and Ellinger 1992).  

In order to capture the timing of cash flows within a particular year, the cash transfer 

equation has two sub-periods. 

Historical data on the decision variables of the model are used to construct a 

variance-covariance matrix that accounts for the sources of risk in the model.  The 

decision variables in this model represent purchases of additional farmland and farm 

machinery, cash renting of supplemental farmland acreage, and incremental loans 

incurred under short-, intermediate- and long-term credit facilities.  This analysis utilized 

fourteen years of historical data (1985-1998) for these variables that were obtained from 

the Agricultural Finance Data Book published by the U. S. Department of Agriculture 

and from the Illinois Agricultural Statistics Service web site.  The signs of the entries in 

the matrix, except for covariance terms among asset/income-generating activities and 



among liabilities/cost-generating activities, were adjusted to correctly specify directional 

effects of certain pairs of activities on risk reduction.  Specifically, this adjustment 

ensures that lower correlations are more preferred among assets (and among liabilities) 

which potentially reduce aggregate risk in the model.  Moreover, higher correlations 

between assets and liabilities were assigned the opposite of their estimated signs to 

account for the reversal of the preferred correlation relationship between these activities. 

Table 3 presents the resulting farm production and financing plans under the two 

alternative formulations of the decision problem statement (CARA versus CRRA) 

obtained using the General Algebraic Modeling System (GAMS) software.    Each 

version of the model considers scenarios of low and high risk aversion levels.  For the 

CARA model, coefficients of absolute risk aversion of 0.0000004 and 0.0006 were used 

to represent low and high risk aversion, respectively.  The CRRA model was evaluated 

using coefficients of relative risk aversion of 0.3 and 2.3 to capture low and high risk 

aversion, respectively. 

 Under the CARA model, the significant change in absolute risk aversion levels 

only resulted in slight adjustments in the average size of farm operations, with the less 

risk-averse farmer operating about 50 acres more than the more risk-averse farmer.  The 

less risk-averse farmer also incurred a higher overall leverage ratio, mainly due to larger 

short- and medium-term leverage positions relative to those of the more risk-averse 

counterpart.  On the other hand, CRRA results indicate that the more risk-averse farmer 

reduced the size of operations by more than 60% compared to the less risk-verse farmer.  

This change produced substantially lower leverage ratios for all types of credit under 



higher relative risk aversion.  Notably, solutions for the decision variables are highly 

sensitive to changes in relative risk aversion levels under the CRRA model. 

The almost identical leverage solutions for the less risk-averse farmer under the 

two models provided a convenient opportunity to further investigate the initial equity 

effects of changes in intertemporal risk behavioral assumptions.  In this analysis, initial 

equity levels for the less risk-averse farm decision-maker in each of the two models were 

reduced by $200,000. Notwithstanding this change, the CARA solutions are identical 

under the two initial equity scenarios.  On the other hand, the CRRA solutions indicate a 

tendency for the farm decision-maker to implement more aggressive production and 

financing plans (i.e. larger farm size and short-term leverage position) when operating 

with lower initial equity.  However, the farmer with higher initial equity position 

maintained a slightly larger proportion of aggregate borrowings to his/her asset base, in 

spite of the fact that the counterpart with lower initial equity had a larger starting short-

term loan account, which was beefed up by the amount deducted from the initial equity 

account.  This result confirms the contention of a positive initial equity effect under the 

CRRA behavioral construct.

6. Conclusion 

 Just correctly identified that the location-scale, or linear distribution, condition is 

a relatively unexplored analytic approach to ordering and evaluating risky alternatives 

facing agricultural producers. The Social Science Citation Index reveals that about 40 of 

the 125 citations of Meyer’s 1987 paper have been in the agricultural economics 

literature. How is this substantial citation consistent with the claim that the approach is 

relatively unexplored? A sampling of the 40 citations provides a partial explanation. The 



agricultural economics literature seems to be willing to use Meyer’s result to 

acknowledge that a mean-standard deviation analysis can be consistent with expected 

utility maximization, but unwilling to fully invest in a mean-standard deviation objective 

function. The unwillingness is due, in part, to the awareness of the restrictive behavioral 

assumptions that are inherent in the linear mean-variance objective function which plays 

a prominent role in prior agricultural economics research.  

We argue that a mean-standard deviation objective that exhibits the widely 

accepted behavioral hypothesis of decreasing absolute risk aversion and decreasing 

absolute prudence can contribute to a fuller exploration of the location-scale analytic 

approach. Many objective functions used in agricultural economics research satisfy the 

location-scale, or linear distribution, condition. So the location-scale analytic approach 

has broad application in agricultural economics research.  

We present a constant relative risk aversion mean-standard deviation objective 

function, which is a simple extension of the linear mean-variance objective function. 

Application to an optimal leverage model shows that the objective function produces 

good analytic results that are substantially different than results from the linear mean-

variance model and very similar to direct expected utility maximization. The constant 

relative risk aversion mean-standard deviation objective function can contribute to 

broader exploration of location-scale analysis in agricultural economics research. 

 

 

 

 

 

 



References 
 

 
Barry, P. J., C. B. Baker, and L.R. Sanint. (1981). "Farmers' Credit Risk and Liquidity 

Management." American Journal of Agricultural Economics 63: 216-227. 
Barry, P. J. and D. R. Willmann (1976). "A Risk-Programming Analysis of Forward Contracting 

with Credit Constraints." American Journal of Agricultural Economics 58(1): 62-70. 
Coyle, B. T. (1999). "Risk Aversion and Yield Uncertainty in Duality Models of Production: A 

Mean-Variance Approach." American Journal of Agricultural Economics 81(3): 553-67. 
Freund, R. J. (1956). "The Introduction of Risk into a Programming Model." Econometrica 24: 

253-263. 
Garcia, P., B. D. Adam, et al. (1994). The Use of Mean-Variance for Commodity Futures and 

Options Hedging Decisions 
Risk Aversion and Prudence: The Case of Mean-Variance Preferences. Journal of Agricultural 

and Resource Economics v19, n1: 32-45. 
Gollier, C. (1995). "The Comparative Statics of Changes in Risk Revisited." Journal of 

Economic Theory 66(2): 522-35. 
Gollier, C. and J. W. Pratt (1996). "Risk Vulnerability and the Tempering Effect of Background 

Risk." Econometrica 64(5): 1109-23. 
Gwinn, A. S., P. J. Barry, P.N. Ellinger. (1992). "Farm Financial Structure Under Uncertainty:  

An Application to Grain Farms." Agricultural Finance Review 52: 43-56. 
Just, R. E. (2003). "Risk research in agricultural economics: opportunities and challenges for the 

next twenty-five years." Agricultural Systems 75(2-3): 123-159. 
Kimball, M. S. (1990). "Precautionary Saving in the Small and in the Large." Econometrica 

58(1): 53-73. 
Lioui, A. and P. Poncet (2001). "Mean-Variance Efficiency of the Market Portfolio and Futures 

Trading." Journal of Futures Markets 21(4): 329-46. 
Meyer, J. (1987). "Two-moment Decision Models and Expected Utility Maximization." 

American Economic Review 77(3): 421-30. 
Meyer, J. and L. J. Robison (1988). "Hedging under Output Price Randomness." American 

Journal of Agricultural Economics 70(2): 268-72. 
Moschini, G. and D. A. Hennessy (2001). Uncertainty, Risk Aversion, and Risk Management for 

Agricultural Producers. Handbook of Agricultural Economics. B. L. Gardner and G. C. 
Rausser. New York, Elsevier. Volume 1A: 87-153. 

Sinn, H.-W. (1989). Economic decisions under uncertainty. Second edition New York, Springer; 
Heidelberg: Physica. 

Wolfram, S. (1999). The Mathematica Book. Champaign, IL, Wolfram Media. 
 
 

 

 

 



Table 1.  Summary Statistics of Rate of Return 
 
  
          Year Mean  Standard Deviation  
 
 
          1987 0.15675820           0.30305994 
 
          1988 0.01670560  0.16609410 
 
          1989   0.14253366    0.14984186 
 
          1990 0.13219492  0.13800189 
 
          1991 0.04628229  0.11026131 
 
          1992 0.16045788  0.20416415 
 
          1993 0.11424879  0.12083227 
 
          1994 0.07497370  0.13974322 
 
          1995 0.04337900  0.16303315 
 
          1996 0.07808465  0.09703295 
 

________________________________________________________________________ 



 

Table 2.  Normality Test of Rate of Return Data 

 

          Year Test Statistic  P-Value 

 

          1987 113.84  0 
 
          1988 8.97  0.01 
 
          1989  48.66  2.7 e-11 
 
          1990 23.96  6.2 e- 6 
 
          1991 7.19  0.003 
 
          1992 61.94  3.6 e-14 
 
          1993 7.76  0.002 
 
          1994 47.49  4.9 e- 11 
 
          1995 60.83  6.2 e- 14 
 
          1996 209.46  0 
 

 

 

 

 

 

 

 



 

Table 3.  Programming Results for CARA and CRRA Models, 
Different Risk Aversion and Initial Equity Levels 

CARA CRRA 
Low Risk Aversion Low Risk Aversion 

 
Selected 
Variables Low Initial 

Equity 
High Initial 

Equity 

High Risk 
Aversion Low Initial 

Equity 
High Initial 

Equity 

High Risk 
Aversion 

Farm Size (Acres, Average) 2,814 2,814 2,760 2,630 2,596 1,028 

Land Purchases (Acres)    33.95  14.75 

Equipment Purchases ($) 480,370 480,370 639,010 480,370 480,370  

New Intermediate-Term Loans 432,340 432,340 575,110 432,340 432,340  

New Short-Term Loans 660,019 660,019 667,256 672,530 570,120 17,716 

Short-Term Debt-Asset Ratio 0.5528 0.5528 0.4237 0.6978 0.5644 0.1992 

Medium-Term Debt-Asset Ratio 0.4391 0.4391 0.3268 0.4391 0.4391 0.1210 

Long-Term Debt-Asset Ratio 0.0788 0.0788 0.0788 0.0788 0.0788 0.0788 

Total Debt-Asset Ratio, Average 0.2955 0.2955 0.2424 0.2935 0.2952 0.1124 
 

 

 

 

 


