635 research outputs found

    My Sweetheart Waltz

    Get PDF
    Couple dancing in moon light on boardwalk surrounded by palm trees and building in backgroundhttps://scholarsjunction.msstate.edu/cht-sheet-music/9370/thumbnail.jp

    Strangers in the Room: Unpacking Perceptions of 'Smartness' and Related Ethical Concerns in the Home

    Full text link
    The increasingly widespread use of 'smart' devices has raised multifarious ethical concerns regarding their use in domestic spaces. Previous work examining such ethical dimensions has typically either involved empirical studies of concerns raised by specific devices and use contexts, or alternatively expounded on abstract concepts like autonomy, privacy or trust in relation to 'smart homes' in general. This paper attempts to bridge these approaches by asking what features of smart devices users consider as rendering them 'smart' and how these relate to ethical concerns. Through a multimethod investigation including surveys with smart device users (n=120) and semi-structured interviews (n=15), we identify and describe eight types of smartness and explore how they engender a variety of ethical concerns including privacy, autonomy, and disruption of the social order. We argue that this middle ground, between concerns arising from particular devices and more abstract ethical concepts, can better anticipate potential ethical concerns regarding smart devices.Comment: 10 pages, 1 figure. To appear in the Proceedings of the 2020 ACM Conference on Designing Interactive Systems (DIS '20

    Nonlinear high-temperature superconducting terahertz metamaterials

    Get PDF
    We report the observation of a nonlinear terahertz response of split-ring resonator arrays made of high-temperature superconducting films. Intensity-dependent transmission measurements indicate that the resonance strength decreases dramatically (i.e. transient bleaching) and the resonance frequency shifts as the intensity is increased. Pump–probe measurements confirm this behaviour and reveal dynamics on the few-picosecond timescale.Los Alamos National Laboratory. Laboratory Directed Research and Development ProgramUnited States. Office of Naval Research (Grant N00014-09-1-1103)National Science Foundation (U.S.) (American Competitiveness in Chemistry Fellowship 1041979

    Ly Alpha-Emitting Galaxies at z=3.1: L* Progenitors Experiencing Rapid Star Formation

    Full text link
    We studied the clustering properties and multiwavelength spectral energy distributions of a complete sample of 162 Ly Alpha-Emitting (LAE) galaxies at z=3.1 discovered in deep narrow-band MUSYC imaging of the Extended Chandra Deep Field South. LAEs were selected to have observed frame equivalent widths >80A and emission line fluxes >1.5E-17 erg/cm^2/s. Only 1% of our LAE sample appears to host AGN. The LAEs exhibit a moderate spatial correlation length of r_0=3.6+0.8-1.0 Mpc, corresponding to a bias factor b=1.7+0.3-0.4, which implies median dark matter halo masses of log10(M_med) = 10.9+0.5-0.9 M_sun. Comparing the number density of LAEs, (1.5+-0.3)E-3/Mpc^3, with the number density of these halos finds a mean halo occupation ~1-10%. The evolution of galaxy bias with redshift implies that most z=3.1 LAEs evolve into present-day galaxies with L3 galaxy populations typically evolve into more massive galaxies. Halo merger trees show that z=0 descendants occupy halos with a wide range of masses, with a median descendant mass close to that of L*. Only 30% of LAEs have sufficient stellar mass (>~3E9 M_sun) to yield detections in deep Spitzer-IRAC imaging. A two-population SED fit to the stacked UBVRIzJK+[3.6,4.5,5.6,8.0]micron fluxes of the IRAC-undetected objects finds that the typical LAE has low stellar mass (1.0+0.6-0.4 E9 M_sun), moderate star formation rate (2+-1 M_sun/yr), a young component age of 20+30-10 Myr, and little dust (A_V<0.2). The best fit model has 20% of the mass in the young stellar component, but models without evolved stars are also allowed.Comment: ApJ, in press, 7 pages including 4 color figure

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3, research summary and reports on six research projects.Joint Services Electronics Program (Contract DAAL 03-86-K-0002)Joint Services Electronics Program (Contract DAAL 03-89-C-0001)U.S. Navy - Office of Naval Research (Contract N00014-86-K-0533)National Science Foundation (Contract ECS 86-20029)U.S. Army Research Office (Contract DAAL03 88-K-0057)International Business Machine CorporationSchlumberger-Doll ResearchNational Aeronautics and Space Administration (Contract NAG 5-270)U.S. Navy - Office of Naval Research (Contract N00014-83-K-0258)National Aeronautics and Space Administration (Contract NAG 5-769)U.S. Army Corps of Engineers - Waterways Experimental Station (Contract DACA39-87-K-0022)Simulation TechnologiesU.S. Air Force - Rome Air Development Center (Contract F19628-88-K-0013)U.S. Navy - Office of Naval Research (Contract N00014-89-J-1107)Digital Equipment Corporatio

    The BRAF Inhibitor Vemurafenib Activates Mitochondrial Metabolism and Inhibits Hyperpolarized Pyruvate–Lactate Exchange in BRAF-Mutant Human Melanoma Cells

    Full text link
    Understanding the impact of BRAF signaling inhibition in human melanoma on key disease mechanisms is important for developing biomarkers of therapeutic response and combination strategies to improve long-term disease control. This work investigates the downstream metabolic consequences of BRAF inhibition with vemurafenib, the molecular and biochemical processes that underpin them, their significance for antineoplastic activity, and potential as noninvasive imaging response biomarkers. H-1 NMR spectroscopy showed that vemurafenib decreases the glycolytic activity of BRAF-mutant (WM266.4 and SKMEL28) but not BRAF(WT) (CHL-1 and D04) human melanoma cells. In WM266.4 cells, this was associated with increased acetate, glycine, and myo-inositol levels and decreased fatty acyl signals, while the bioenergetic status was maintained. C-13 NMR metabolic flux analysis of treated WM266.4 cells revealed inhibition of de novo lactate synthesis and glucose utilization, associated with increased oxidative and anaplerotic pyruvate carboxylase mitochondrial metabolism and decreased lipid synthesis. This metabolic shift was associated with depletion of hexokinase 2, acyl-CoA dehydrogenase 9, 3-phosphoglycerate dehydrogenase, and monocarboxylate transporters (MCT) 1 and 4 in BRAF-mutant but not BRAF(WT) cells and, interestingly, decreased BRAF-mutant cell dependency on glucose and glutamine for growth. Further, the reduction in MCT1 expression observed led to inhibition of hyperpolarized C-13-pyruvatelactate exchange, a parameter that is translatable to in vivo imaging studies, in live WM266.4 cells. In conclusion, our data provide new insights into the molecular and metabolic consequences of BRAF inhibition in BRAF-driven human melanoma cells that may have potential for combinatorial therapeutic targeting as well as noninvasive imaging of response. (C) 2016 AACR

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Ultrafast terahertz-field-driven ionic response in ferroelectric BaTiO3

    Get PDF
    The dynamical processes associated with electric field manipulation of the polarization in a ferroelectric remain largely unknown but fundamentally determine the speed and functionality of ferroelectric materials and devices. Here we apply subpicosecond duration, single-cycle terahertz pulses as an ultrafast electric field bias to prototypical BaTiO[subscript 3] ferroelectric thin films with the atomic-scale response probed by femtosecond x-ray-scattering techniques. We show that electric fields applied perpendicular to the ferroelectric polarization drive large-amplitude displacements of the titanium atoms along the ferroelectric polarization axis, comparable to that of the built-in displacements associated with the intrinsic polarization and incoherent across unit cells. This effect is associated with a dynamic rotation of the ferroelectric polarization switching on and then off on picosecond time scales. These transient polarization modulations are followed by long-lived vibrational heating effects driven by resonant excitation of the ferroelectric soft mode, as reflected in changes in the c-axis tetragonality. The ultrafast structural characterization described here enables a direct comparison with first-principles-based molecular-dynamics simulations, with good agreement obtained
    corecore