65,281 research outputs found

    How effective is harassment on infalling late-type dwarfs?

    Full text link
    A new harassment model is presented that models the complex, and dynamical tidal field of a Virgo like galaxy cluster. The model is applied to small, late-type dwarf disc galaxies (of substantially lower mass than in previous harassment simulations) as they infall into the cluster from the outskirts. These dwarf galaxies are only mildly affected by high speed tidal encounters with little or no observable consequences; typical stellar losses are <10%<10\%, producing very low surface brightness streams (μB>31\mu_B > 31 mag arcsec−2^{-2}), and a factor of two drop in dynamical mass-to-light ratio. Final stellar discs remain disc-like, and dominated by rotation although often with tidally induced spiral structure. By means of Monte-Carlo simulations, the statistically likely influences of harassment on infalling dwarf galaxies are determined. The effects of harassment are found to be highly dependent on the orbit of the galaxy within the cluster, such that newly accreted dwarf galaxies typically suffer only mild harassment. Strong tidal encounters, that can morphologically transform discs into spheroidals, are rare occurring in <15%<15 \% of dwarf galaxy infalls for typical orbits of sub-structure within Λ\LambdaCDM cluster mass halos. For orbits with small apocentric distances (<<250 kpc), harassment is significantly stronger resulting in complete disruption or heavy mass loss (>90%>90 \% dark matter and >50%> 50 \% stellar), however, such orbits are expected to be highly improbable for newly infalling galaxies due to the deep potential well of the cluster.Comment: 15 pages, 11 figures, 4 table

    Shock and vibration tests of a SNAP-8 NaK pump

    Get PDF
    The pump used for reactor cooling in the SNAP 8 space power system was subjected to the expected vehicle launch vibration, and shock loading in accordance with the SNAP 8 environmental specification. Subsequent disassembly revealed damage to the thrust bearing pins, which should be redesigned and strengthened. The unit was operational, however, when run in a test loop after reassembly

    The Quantum Modular Group in (2+1)-Dimensional Gravity

    Get PDF
    The role of the modular group in the holonomy representation of (2+1)-dimensional quantum gravity is studied. This representation can be viewed as a "Heisenberg picture", and for simple topologies, the transformation to the ADM "Schr{\"o}dinger picture" may be found. For spacetimes with the spatial topology of a torus, this transformation and an explicit operator representation of the mapping class group are constructed. It is shown that the quantum modular group splits the holonomy representation Hilbert space into physically equivalent orthogonal ``fundamental regions'' that are interchanged by modular transformations.Comment: 23 pages, LaTeX, no figures; minor changes and clarifications in response to referee (basic argument and conclusions unaffected

    Topological relaxation of entangled flux lattices: Single vs collective line dynamics

    Full text link
    A symbolic language allowing to solve statistical problems for the systems with nonabelian braid-like topology in 2+1 dimensions is developed. The approach is based on the similarity between growing braid and "heap of colored pieces". As an application, the problem of a vortex glass transition in high-T_c superconductors is re-examined on microscopic levelComment: 4 pages (revtex), 4 figure

    Defect-Mediated Emulsification in Two Dimensions

    Get PDF
    We consider two dimensional dispersions of droplets of isotropic phase in a liquid with an XY-like order parameter, tilt, nematic, and hexatic symmetries being included. Strong anchoring boundary conditions are assumed. Textures for a single droplet and a pair of droplets are calculated and a universal droplet-droplet pair potential is obtained. The interaction of dispersed droplets via the ordered phase is attractive at large distances and repulsive at short distances, which results in a well defined preferred separation for two droplets and topological stabilization of the emulsion. This interaction also drives self-assembly into chains. Preferred separations and energy barriers to coalescence are calculated, and effects of thermal fluctuations and film thickness are discussed.Comment: revtex4, 13 pages, 12 figure

    The 1984 - 1987 Solar Maximum Mission event list

    Get PDF
    Information on solar burst and transient activity observed by the Solar Maximum Mission (SMM) during 1984-1987 pointed observations is presented. Data from the following SMM experiments are included: (1) gamma ray spectrometer; (2) hard x-ray burst spectrometer; (3) flat crystal spectrometer; (4) bent crystal spectrometer; (5) ultraviolet spectrometer polarimeter; and (6) coronograph/polarimeter. Correlative optical, radio, and Geostationary Operational Environmental Satellite (GOES) x ray data are also presented. Where possible, bursts or transients observed in the various wavelengths were grouped into discrete flare events identified by unique event numbers. Each event carries a qualifier denoting the quality or completeness of the observations. Spacecraft pointing coordinates and flare site angular displacement values from sun center are also included

    Interacting Crumpled Manifolds: Exact Results to all Orders of Perturbation Theory

    Full text link
    In this letter, we report progress on the field theory of polymerized tethered membranes. For the toy-model of a manifold repelled by a single point, we are able to sum the perturbation expansion in the strength g of the interaction exactly in the limit of internal dimension D -> 2. This exact solution is the starting point for an expansion in 2-D, which aims at connecting to the well studied case of polymers (D=1). We here give results to order (2-D)^4, where again all orders in g are resummed. This is a first step towards a more complete solution of the self-avoiding manifold problem, which might also prove valuable for polymers.Comment: 8 page

    Quantum geometry from 2+1 AdS quantum gravity on the torus

    Full text link
    Wilson observables for 2+1 quantum gravity with negative cosmological constant, when the spatial manifold is a torus, exhibit several novel features: signed area phases relate the observables assigned to homotopic loops, and their commutators describe loop intersections, with properties that are not yet fully understood. We describe progress in our study of this bracket, which can be interpreted as a q-deformed Goldman bracket, and provide a geometrical interpretation in terms of a quantum version of Pick's formula for the area of a polygon with integer vertices.Comment: 19 pages, 11 figures, revised with more explanations, improved figures and extra figures. To appear GER

    Electrostatic colloid-membrane complexation

    Full text link
    We investigate numerically and on the scaling level the adsorption of a charged colloid on an oppositely charged flexible membrane. We show that the long ranged character of the electrostatic interaction leads to a wrapping reentrance of the complex as the salt concentration is varied. The membrane wrapping depends on the size of the colloid and on the salt concentration and only for intermediate salt concentration and colloid sizes we find full wrapping. From the scaling model we derive simple relations for the phase boundaries between the different states of the complex, which agree well with the numerical minimization of the free energy.Comment: 7 page, 11 figure
    • …
    corecore