63,931 research outputs found

    Cementation scenarios for New Zealand Cenozoic nontropical limestones

    Get PDF
    Cenozoic limestones are widely distributed in New Zealand, especially in the Oligocene-earliest Miocene in both islands, and the Pliocene-Pleistocene in North Island. A spectrum of limestone types exists, but all are skeletal-dominated (>70%), with usually <20% interparticle cement-matrix and <10% siliciclasts, and they have facies attributes typical of nontropical carbonates. The range of diagenetic features identified within the limestones is the basis for assigning them to a small number of “end-member” cementation classes that are inferred to be associated with four, broad, diagenetic settings

    Structure and dynamics of topological defects in a glassy liquid on a negatively curved manifold

    Get PDF
    We study the low-temperature regime of an atomic liquid on the hyperbolic plane by means of molecular dynamics simulation and we compare the results to a continuum theory of defects in a negatively curved hexagonal background. In agreement with the theory and previous results on positively curved (spherical) surfaces, we find that the atomic configurations consist of isolated defect structures, dubbed "grain boundary scars", that form around an irreducible density of curvature-induced disclinations in an otherwise hexagonal background. We investigate the structure and the dynamics of these grain boundary scars

    New shield for gamma-ray spectrometry

    Get PDF
    Gamma-ray shield that can be evacuated, refilled with a clean gas, and pressurized for exclusion of airborne radioactive contaminants effectively lowers background noise. Under working conditions, repeated evacuation and filling procedures have not adversely affected the sensitivity and resolution of the crystal detector

    Tracking analysis of a first order phase- locked loop with two sinewaves modulation

    Get PDF
    Phase locked-loop tracking with sine wave modulation in Apollo communication system

    A comparative study of nonparametric methods for pattern recognition

    Get PDF
    The applied research discussed in this report determines and compares the correct classification percentage of the nonparametric sign test, Wilcoxon's signed rank test, and K-class classifier with the performance of the Bayes classifier. The performance is determined for data which have Gaussian, Laplacian and Rayleigh probability density functions. The correct classification percentage is shown graphically for differences in modes and/or means of the probability density functions for four, eight and sixteen samples. The K-class classifier performed very well with respect to the other classifiers used. Since the K-class classifier is a nonparametric technique, it usually performed better than the Bayes classifier which assumes the data to be Gaussian even though it may not be. The K-class classifier has the advantage over the Bayes in that it works well with non-Gaussian data without having to determine the probability density function of the data. It should be noted that the data in this experiment was always unimodal

    A fluid flow perspective on the diagenesis of Te Aute limestones

    Get PDF
    Pliocene cool-water, bioclastic Te Aute limestones in East Coast Basin, New Zealand, accumulated either in shelfal shoal areas or about structurally shallow growth fold structures in the tectonically active accretionary forearc prism. Up to five stages of carbonate cementation are recognised, based on cement sequence-stratigraphic concepts, that formed on the seafloor during exposure of the limestones before burial, during burial, uplift, and deformation. Two principal fluid types are identified--topography-driven meteoric fluids and compaction-driven fluids. We have developed conceptual and quantitative models that attempt to relate the physical characteristics of fluid flow to the cement paragenesis. In particular, we have simulated the effects of uplift of the axial ranges bordering East Coast Basin in terms of the degree of penetration of a meteoric wedge into the basin. The dynamics of meteoric flow changed dramatically during uplift over the last 2 m.y. such that the modelled extent of the meteoric wedge is at least 40 km across the basin, and the penetration depth 1500 m or more corresponding with measured freshwater intersections in some oil wells. Cement-fluid relationships include: (1) true marine cements that precipitated in areas remote from shallow freshwater lenses; (2) pre-compaction cements that formed in shallow freshwater lenses beneath limestone "islands"; (3) post-compaction cements derived from compaction-driven flow during burial; (4) early uplift-related fracture-fill cements formed during deformation of the accretionary prism and uplift of the axial ranges; and (5) late uplift-related cements associated with uplift into a shallow meteoric regime

    Free Energies of Isolated 5- and 7-fold Disclinations in Hexatic Membranes

    Full text link
    We examine the shapes and energies of 5- and 7-fold disclinations in low-temperature hexatic membranes. These defects buckle at different values of the ratio of the bending rigidity, Îș\kappa, to the hexatic stiffness constant, KAK_A, suggesting {\em two} distinct Kosterlitz-Thouless defect proliferation temperatures. Seven-fold disclinations are studied in detail numerically for arbitrary Îș/KA\kappa/K_A. We argue that thermal fluctuations always drive Îș/KA\kappa/K_A into an ``unbuckled'' regime at long wavelengths, so that disclinations should, in fact, proliferate at the {\em same} critical temperature. We show analytically that both types of defects have power law shapes with continuously variable exponents in the ``unbuckled'' regime. Thermal fluctuations then lock in specific power laws at long wavelengths, which we calculate for 5- and 7-fold defects at low temperatures.Comment: LaTeX format. 17 pages. To appear in Phys. Rev.

    Lithostratigraphy and depositional episodes of the Oligocene carbonate-rich Tikorangi Formation, Taranaki Basin, New Zealand

    Get PDF
    The subsurface Oligocene Tikorangi Formation is a unique and important oil producer in the onshore Waihapa-Ngaere Field, Taranaki Basin, being the only carbonate and fracture-producing reservoir within the basin. Core sample data from seven onshore wells (foredeep megafacies) and a single offshore well (basinal megafacies) are correlated with a suite of sonic and gamma-ray geophysical well log data to derive interpretative carbonate facies for the Tikorangi Formation. Four mixed siliciclastic-carbonate to carbonate facies have been defined: facies A-calcareous siliciclastite (75% carbonate). Single or interbedded combinations of these facies form the basis for identifying nine major lithostratigraphic units in the Tikorangi Formation that are correlatable between the eight wells in this study.The Tikorangi Formation accumulated across a shelf-slope-basin margin within a tectonically diversified basin setting, notably involving considerable off-shelf redeposition of sediment into a bounding foredeep. Analysis of gamma, sonic, and resistivity well logs identifies five major episodes of sedimentary evolution. Episode I comprises retrogradational siliciclastic-dominated redeposited units associated with foredeep subsidence. Episode II is a continuation of episode I retrogradation, but with increased mass-redeposited carbonate influx during accelerated foredeep subsidence and relative sea-level rise, the top marking the maximum flooding surface. Episode III involves a progradational sequence comprising relatively pure redeposited carbonate units associated with declining subsidence rates and minimal siliciclastic input, with movement of facies belts basinward. Episode IV consists of prograding aggradation involving essentially static facies belts dominated by often thick, periodically mass-emplaced, carbonate-rich units separated by thin background siliciclastic shale-like units. Episode V is a retrogradational sequence marking the reintroduction of siliciclastic material into the basin following uplift of Mesozoic basement associated with accelerated compressional tectonics along the Australia-Pacific plate boundary, initially diluting and ultimately extinguishing carbonate production factories and terminating deposition of the Tikorangi Formation

    Petrogenesis of the Tikorangi Formation fracture reservoir, Waihapa-Ngaere Field, Taranaki Basin

    Get PDF
    The subsurface mid-Tertiary Tikorangi Formation is the sole limestone and the only fracture-producing hydrocarbon reservoir within Taranaki Basin. This study, based on core material from seven wells in the onshore Waihapa/Ngaere Field, uses a range of petrographic (standard, CL, UV, SEM) and geochemical techniques (stable isotope, trace element data, XRD) to unravel a complex diagenetic history for the Tikorangi Formation. A series of eight major geological-diagenetic events for the host rock and fracture systems have been established, ranging from burial cementation through to hydrocarbon emplacement within mineralized fractures. For each diagenetic event a probable temperature field has been identified which, combined with a geohistory plot, has enabled the timing of events to be determined. This study has shown that the Tikorangi Formation comprises a complex mixed siliciclastic-carbonate-rich sequence of rocks that exhibit generally tight, pressure-dissolved, and well cemented fabrics with negligible porosity and permeability other than in fractures. Burial cementation of the host rocks occurred at temperatures of 27-37°C from about 0.5-1.0 km burial depths. Partial replacement dolomitisation occurred during late burial diagenesis at temperatures of 36-50°C and at burial depths of about 1.0 km, without any secondary porosity development. Fracturing occurred after dolomitisation and was associated with compression and thrusting on the Taranaki Fault. The location of more carbonate/dolomite-rich units may have implications for the location of better-developed fracture network systems and for hydrocarbon prospectivity and production. Hydrocarbon productivity has been ultimately determined by original depositional facies, diagenesis, and deformation. Within the fracture systems, a complex suite of vein calcite, dolomite, quartzine, and celestite minerals has been precipitated prior to hydrocarbon emplacement, which have substantially healed and reduced fracture porosities and permeabilities. The occurrence of multiple vein mineral phases, collectively forming a calcite/dolomite-celestite-quartzine mineral assemblage, points to fluid compositions varying both spatially and temporally. The fluids responsible for vein mineralisation in the Tikorangi Formation probably involved waters of diverse origins and compositions. Vein mineralisation records a history of changing pore fluid chemistry and heating during burial, punctuated by changes in the relative input and mixing of downward circulating meteoric and upwelling basinal fluids. A sequence of mineralisation events and their probable burial depth/temperature fields have been defined, ranging from temperatures of 50-80°C and burial depths of 1.0-2.3 km. Hydrocarbon emplacement has occurred over the last 6 m.y. following the vein mineralization events. The Tikorangi Formation must continue to be viewed as a potential fracture reservoir play within Taranaki Basin
    • 

    corecore