545 research outputs found
Numerical Study of the Spin-Flop Transition in Anisotropic Spin-1/2 Antiferromagnets
Magnetization processes of the spin-1/2 antiferromagnetic model in two
and three spatial dimensions are studied using quantum Monte Carlo method based
on stochastic series expansions. Recently developed operator-loop algorithm
enables us to show a clear evidence of the first-order phase transition in the
presence of an external magnetic field. Phase diagrams of closely related
systems, hard core bosons with nearest-neighbor repulsions, are also discussed
focusing on possibilities of phase-separated and supersolid phases.Comment: 4 pages, Revtex version 4, with 4 figures embedded, To appear in
Phys. Rev.
Critical temperature for the two-dimensional attractive Hubbard Model
The critical temperature for the attractive Hubbard model on a square lattice
is determined from the analysis of two independent quantities, the helicity
modulus, , and the pairing correlation function, . These
quantities have been calculated through Quantum Monte Carlo simulations for
lattices up to , and for several densities, in the
intermediate-coupling regime. Imposing the universal-jump condition for an
accurately calculated , together with thorough finite-size scaling
analyses (in the spirit of the phenomenological renormalization group) of
, suggests that is considerably higher than hitherto assumed.Comment: 5 pages, 6 figures. Accepted for publication in Phys. Rev.
Hydrodynamics of Spatially Ordered Superfluids
We derive the hydrodynamic equations for the supersolid and superhexatic
phases of a neutral two-dimensional Bose fluid. We find, assuming that the
normal part of the fluid is clamped to an underlying substrate, that both
phases can sustain third-sound modes and that in the supersolid phase there are
additional modes due to the superfluid motion of point defects (vacancies and
interstitials).Comment: 24 pages of ReVTeX and 7 uuencoded figures. Submitted for publication
in Phys. Rev.
Simultaneous Diagonal and Off Diagonal Order in the Bose--Hubbard Hamiltonian
The Bose-Hubbard model exhibits a rich phase diagram consisting both of
insulating regimes where diagonal long range (solid) order dominates as well as
conducting regimes where off diagonal long range order (superfluidity) is
present. In this paper we describe the results of Quantum Monte Carlo
calculations of the phase diagram, both for the hard and soft core cases, with
a particular focus on the possibility of simultaneous superfluid and solid
order. We also discuss the appearance of phase separation in the model. The
simulations are compared with analytic calculations of the phase diagram and
spin wave dispersion.Comment: 28 pages plus 24 figures, uuencoded Revtex+postscript file
Nature of the quantum phase transitions in the two-dimensional hardcore boson model
We use two Quantum Monte Carlo algorithms to map out the phase diagram of the
two-dimensional hardcore boson Hubbard model with near () and next near
() neighbor repulsion. At half filling we find three phases: Superfluid
(SF), checkerboard solid and striped solid depending on the relative values of
, and the kinetic energy. Doping away from half filling, the
checkerboard solid undergoes phase separation: The superfluid and solid phases
co-exist but not as a single thermodynamic phase. As a function of doping, the
transition from the checkerboard solid is therefore first order. In contrast,
doping the striped solid away from half filling instead produces a striped
supersolid phase: Co-existence of density order with superfluidity as a single
phase. One surprising result is that the entire line of transitions between the
SF and checkerboard solid phases at half filling appears to exhibit dynamical
O(3) symmetry restoration. The transitions appear to be in the same
universality class as the special Heisenberg point even though this symmetry is
explicitly broken by the interaction.Comment: 10 pages, 14 eps figures, include
Anisotropic London Penetration Depth and Superfluid Density in Single Crystals of Iron-based Pnictide Superconductors
In- and out-of-plane magnetic penetration depths were measured in three
iron-based pnictide superconducting systems. All studied samples of both 122
systems show a robust power-law behavior, , with the
sample-dependent exponent n=2-2.5, which is indicative of unconventional
pairing. This scenario could be possible either through scattering in a state or due to nodes in the superconducting gap. In the Nd-1111 system, the
interpretation of data may be obscured by the magnetism of rare-earth ions. The
overall anisotropy of the pnictide superconductors is small. The 1111 system is
about two times more anisotropic than the 122 system. Our data and analysis
suggest that the iron-based pnictides are complex superconductors in which a
multiband three-dimensional electronic structure and strong magnetic
fluctuations play important roles.Comment: submitted to a special issue of Physica C on superconducting
pnictide
The types of Mott insulator
There are two classes of Mott insulators in nature, distinguished by their
responses to weak doping. With increasing chemical potential, Type I Mott
insulators undergo a first order phase transition from the undoped to the doped
phase. In the presence of long-range Coulomb interactions, this leads to an
inhomogeneous state exhibiting ``micro-phase separation.'' In contrast, in Type
II Mott insulators charges go in continuously above a critical chemical
potential. We show that if the insulating state has a broken symmetry, this
increases the likelihood that it will be Type I. There exists a close analogy
between these two types of Mott insulators and the familiar Type I and Type II
superconductors
Evidence for osteocyte-mediated bone-matrix degradation associated with periprosthetic joint infection (PJI)
Osteomyelitis associated with periprosthetic joint infection (PJI) signals a chronic infection and the need for revision surgery. An osteomyelitic bone exhibits distinct morphological features, including evidence for osteolysis and an accelerated bone remodelling into poorly organised, poor-quality bone. In addition to immune cells, various bone cell-types have been implicated in the pathology. The present study sought to determine the types of bone-cell activities in human PJI bones. Acetabular biopsies from peri-implant bone from patients undergoing revision total hip replacement (THR) for chronic PJI (with several identified pathogens) as well as control bone from the same patients and from patients undergoing primary THR were analysed. Histological analysis confirmed that PJI bone presented increased osteoclastic activity compared to control bone. Analysis of osteocyte parameters showed no differences in osteocyte lacunar area between the acetabular bone taken from PJI patients or primary THR controls. Analysis of bone matrix composition using Masson's trichrome staining and second-harmonic generation microscopy revealed widespread lack of mature collagen, commonly surrounding osteocytes, in PJI bone. Increased expression of known collagenases, such as matrix metallopeptidase (MMP) 13, MMP1 and cathepsin K (CTSK), was measured in infected bone compared to non-infected bone. Human bone and cultured osteocyte-like cells experimentally exposed to Staphylococcus aureus exhibited strongly upregulated expression of MMP1, MMP3 and MMP13 compared to non-exposed controls. In conclusion, the study identified previously unrecognised bone-matrix changes in PJI caused by multiple organisms deriving from osteocytes. Histological examination of bone collagen composition may provide a useful adjunct diagnostic measure of PJI.R.T. Ormsby, A.R. Zelmer, D. Yang, N.J. Gunn, Y. Starczak, S.P. Kidd ... et al
British Association of dermatologists guidelines for biologic therapy for psoriasis 2020 – a rapid update
The overall aim of the guideline is to provide up‐to‐date, evidence‐based recommendations on the use of biologic therapies targeting TNF (adalimumab, etanercept, certolizumab pegol, infliximab), IL12/23p40 (ustekinumab), IL17A (ixekizumab, secukinumab), IL17RA (brodalumab) and IL23p19 (guselkumab, risankizumab, tildrakizumab) in adults, children and young people for the treatment of psoriasis; consideration is given to the specific needs of people with psoriasis and psoriatic arthritis
- …