2,626 research outputs found
The Ras effector NORE1A forms a tumor suppressor complex with BRCA1.
Ras proteins function as molecular signaling switches that can stimulate multiple mitogenic pathways in response to extracellular signaling. Oncogenic activation of Ras by structural mutation is a highly transforming event in ~1/3 of human cancers. However, aberrant Ras activation can also promote oncogene-induced senescence. This Ras-induced irreversible growth arrest is a physiological process that acts as a barrier to malignancy. The mechanisms by which Ras drives senescence and how this process is bypassed during Ras-driven transformation remains poorly understood.
Although mutations in the RAS gene are extremely rare in human breast cancer, the Ras signaling pathway is constitutively activated in roughly half of all primary breast tumors. This is largely due to aberrant activation of upstream regulators of Ras, like the EGFR family member Her2 and inactivation of negative Ras regulators, such as NF1.
NORE1A (RASSF5) is a direct Ras effector that acts as a tumor suppressor by promoting apoptosis and senescence. Expression of NORE1A is frequently lost in primary breast tumors and breast cancer cell lines, though its mechanism of action in breast cancer pathogenesis remains unclear.
BRCA1 is a tumor suppressor that plays a key role in DNA DSB repair. Loss of BRCA1 is associated with hereditary breast and ovarian cancer, and is also thought to play a role in sporadic breast cancer. Recently, BRCA1 was shown to play a role in both Her2 and Ras senescence, but the mechanism underlying the communication between Her2/Ras and BRCA1 was not identified.
I have discovered that NORE1A forms an endogenous, Her2/Ras-regulated complex with BRCA1. I show that dual suppression of NORE1A and BRCA1 has a synergistic effect on transformation. Furthermore, I show that NORE1A loss suppresses the BRCA1-mediated senescence effect. Finally, I show that NORE1A and BRCA1 synergize to modulate DNA repair. Thus, I identify a novel tumor suppressor complex that connects Her2/Ras senescence signaling to BRCA1 in breast cancer
Recommended from our members
Use of Denosumab in Children With Osteoclast Bone Dysplasias: Report of Three Cases.
Denosumab has been used successfully to treat disease-associated osteoclast overactivity, including giant cell tumor of bone. Given its mechanism of action, denosumab is a potent potential treatment of other osteoclast bone dysplasias including central giant cell granuloma (CGCG), aneurysmal bone cyst (ABC), and cherubism. Relatively little is known about the safety and efficacy of denosumab in patients with these conditions, especially in children. We report on 3 pediatric patients treated with denosumab over a 3-year period at UCLA Medical Center (Los Angeles and Santa Monica, CA, USA): a 12-year-old with recurrent ABC of the pelvis, a 14-year-old with CGCG of the mandible, and a 12-year-old with cherubism. All were started on a 1-year course of 15 doses 120 mg s.c., given monthly with two loading doses on day 8 and 15. All patients demonstrated rapid and pronounced clinical improvement while on denosumab, including a significant reduction in pain and sclerosis of lytic lesions on radiographs. Within 1 month of initiating therapy, 2 patients experienced hypocalcemia (Common Terminology Criteria for Adverse Events [CTCAE] grade 2) and hypophosphatemia, with 1 patient experiencing symptoms. One patient went on to experience symptomatic rebound hypercalcemia (CTCAE grade 4) 5 months after completing therapy, requiring bisphosphonates and calcitonin. For the second patient, we developed a schedule to wean denosumab involving the progressive lengthening of time between doses from 1 to 4 months in 1-month increments before cessation. We found that denosumab therapy results in significant clinical and radiographic improvement for pediatric patients with nonresectable ABC, CGCG, and cherubism. Problems with serum calcium may be more common in younger patients, with symptomatic and protracted rebound hypercalcemia after cessation of therapy the most significant. We present a potential solution to this problem with progressive spacing of doses. Potential serious adverse events from alterations in calcium homeostasis should be explored in prospective clinical trials. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research
Overlap of heritable influences between Cannabis Use Disorder, frequency of use and opportunity to use cannabis: Trivariate twin modelling and implications for genetic design
Background: The genetic component of Cannabis Use Disorder may overlap with influences acting more generally on early stages of cannabis use. This paper aims to determine the extent to which genetic influences on the development of cannabis abuse/dependence are correlated with those acting on the opportunity to use cannabis and frequency of use. Methods: A cross-sectional study of 3303 Australian twins, measuring age of onset of cannabis use opportunity, lifetime frequency of cannabis use, and lifetime DSM-IV cannabis abuse/dependence. A trivariate Cholesky decomposition estimated additive genetic (A), shared environment (C) and unique environment (E) contributions to the opportunity to use cannabis, the frequency of cannabis use, cannabis abuse/dependence, and the extent of overlap between genetic and environmental factors associated with each phenotype. Results: Variance components estimates were A = 0.64 [95% confidence interval (CI) 0.58–0.70] and E = 0.36 (95% CI 0.29–0.42) for age of opportunity to use cannabis, A = 0.74 (95% CI 0.66–0.80) and E = 0.26 (95% CI 0.20–0.34) for cannabis use frequency, and A = 0.78 (95% CI 0.65–0.88) and E = 0.22 (95% CI 0.12–0.35) for cannabis abuse/dependence. Opportunity shares 45% of genetic influences with the frequency of use, and only 17% of additive genetic influences are unique to abuse/dependence from those acting on opportunity and frequency. Conclusions: There are significant genetic contributions to lifetime cannabis abuse/dependence, but a large proportion of this overlaps with influences acting on opportunity and frequency of use. Individuals without drug use opportunity are uninformative, and studies of drug use disorders must incorporate individual exposure to accurately identify aetiology
Characterizing the immune microenvironment of malignant peripheral nerve sheath tumor by PD-L1 expression and presence of CD8+ tumor infiltrating lymphocytes.
BackgroundMalignant peripheral nerve sheath tumor (MPNST) is an aggressive sarcoma with few treatment options. Tumor immune state has not been characterized in MPNST, and is important in determining response to immune checkpoint blockade. Our aim was to evaluate the expression of programmed death-ligand 1 (PD-L1), programmed cell death protein 1 (PD-1), and presence of CD8+ tumor infiltrating lymphocytes (TILs) in MPNST, and correlate these findings with clinical behavior and outcome.ResultsPD-L1 staining of at least 1% was seen in 0/20 nerves, 2/68 benign lesions and 9/53 MPNST. Two of 68 benign lesions and 7/53 (13%) MPNST had at least 5% PD-L1 staining. CD8 staining of at least 5% was seen in 1/20 (5%) nerves, 45/68 (66%) benign lesions and 30/53 (57%) MPNST. PD-L1 was statistically more prevalent in MPNST than both nerves and benign lesions (p=0.049 and p=0.008, respectively). Expression of PD-1 was absent in all tissue specimens. There was no correlation of PD-L1 or CD8 expression with disease state (primary versus metastatic) or patient survival.MethodsA comprehensive PNST tissue microarray was created from 141 surgical specimens including primary, recurrent, and metastatic MPNST (n=53), neurofibromas (n=57), schwannoma (n=11), and normal nerve (n=20). Cores were stained in triplicate for PD-L1, PD-1, and CD8, and expression compared between tumor types. These data were then examined for survival correlates in 35 patients with primary MPNST.ConclusionsMPNST is characterized by low PD-L1 and absent PD-1 expression with significant CD8+ TIL presence. MPNST immune microenvironment does not correlate with patient outcome
An Australian twin study of cannabis and other illicit drug use and misuse, and other psychopathology
Cannabis is the most widely used illicit drug throughout the developed world and there is consistent evidence of heritable influences on multiple stages of cannabis involvement including initiation of use and abuse/dependence. In this paper, we describe the methodology and preliminary results of a large-scale interview study of 3,824 young adult twins (born 1972–1979) and their siblings. Cannabis use was common with 75.2% of males and 64.7% of females reporting some lifetime use of cannabis while 24.5% of males and 11.8% of females reported meeting criteria for DSM-IV cannabis abuse or dependence. Rates of other drug use disorders and common psychiatric conditions were highly correlated with extent of cannabis involvement and there was consistent evidence of heritable influences across a range of cannabis phenotypes including early (≤15 years) opportunity to use (h(2) = 72%), early (≤16 years) onset use (h(2) = 80%), using cannabis 11+ times lifetime (h(2) = 76%), and DSM abuse/dependence (h(2) = 72%). Early age of onset of cannabis use was strongly associated with increased rates of subsequent use of other illicit drugs and with illicit drug abuse/dependence; further analyses indicating that some component of this association may have been mediated by increasing exposure to and opportunity to use other illicit drugs
Visualizing electrostatic gating effects in two-dimensional heterostructures
The ability to directly observe electronic band structure in modern nanoscale
field-effect devices could transform understanding of their physics and
function. One could, for example, visualize local changes in the electrical and
chemical potentials as a gate voltage is applied. One could also study
intriguing physical phenomena such as electrically induced topological
transitions and many-body spectral reconstructions. Here we show that submicron
angle-resolved photoemission (micro-ARPES) applied to two-dimensional (2D) van
der Waals heterostructures affords this ability. In graphene devices, we
observe a shift of the chemical potential by 0.6 eV across the Dirac point as a
gate voltage is applied. In several 2D semiconductors we see the conduction
band edge appear as electrons accumulate, establishing its energy and momentum,
and observe significant band-gap renormalization at low densities. We also show
that micro-ARPES and optical spectroscopy can be applied to a single device,
allowing rigorous study of the relationship between gate-controlled electronic
and excitonic properties.Comment: Original manuscript with 9 pages with 4 figures in main text, 5 pages
with 4 figures in supplement. Substantially edited manuscript accepted at
Natur
Lidar sampling for large-area forest characterization: A review
The ability to use digital remotely sensed data for forest inventory is often limited by the nature of the measures, which, with the exception of multi-angular or stereo observations, are largely insensitive to vertically distributed attributes. As a result, empirical estimates are typically made to characterize attributes such as height, volume, or biomass, with known asymptotic relationships as signal saturation occurs. Lidar (light detection and ranging) has emerged as a robust means to collect and subsequently characterize vertically distributed attributes. Lidar has been established as an appropriate data source for forest inventory purposes; however, large area monitoring and mapping activities with lidar remain challenging due to the logistics, costs, and data volumes involved.The use of lidar as a sampling tool for large-area estimation may mitigate some or all of these problems. A number of factors drive, and are common to, the use of airborne profiling, airborne scanning, and spaceborne lidar systems as sampling tools for measuring and monitoring forest resources across areas that range in size from tens of thousands to millions of square kilometers. In this communication, we present the case for lidar sampling as a means to enable timely and robust large-area characterizations. We briefly outline the nature of different lidar systems and data, followed by the theoretical and statistical underpinnings for lidar sampling. Current applications are presented and the future potential of using lidar in an integrated sampling framework for large area ecosystem characterization and monitoring is presented. We also include recommendations regarding statistics, lidar sampling schemes, applications (including data integration and stratification), and subsequent information generation. © 2012
- …