1,983 research outputs found

    Use of W-Boson Longitudinal-Transverse Interference in Top Quark Spin-Correlation Functions: II

    Full text link
    This continuation of the derivation of general beam-referenced stage-two spin-correlation functions is for the analysis of top-antitop pair-production at the Tevatron and at the Large Hadron Collider. Both the gluon-production and the quark-production contributions are included for the charged-lepton-plus-jets reaction p p or p bar{p} --> t bar{t} --> (W^+ b)(W^- bar{b}) --> (l^{+} nu b)(W^- bar{b}). There is a simple 4-angle beam-referenced spin-correlation function for determination of the relative sign of, or for measurement of a possible non-trivial phase between the two dominant helicity amplitudes for t --> W^{+} b decay. There is an analogous function and tests for bar{t} --> W^{-} bar{b} decay. This signature requires use of the (t bar{t}) c.m.-energy of the hadronically decaying W-boson, or the kinematically equivalent cosine of the polar-angle of W-boson emission in the anti-top (top) decay frame. Spinors and their outer-products are constructed so that the helicity-amplitude phase convention of Jacob & Wick can be used throughout for the fixing of the signs associated with this large W-boson longitudinal-transverse interference effect.Comment: Continuation of hep-ph/0506240 to include gluon-production contribution; 3 "postscript" figures. Equation numbers as in published-on-line EPJ

    Energy Spectra and Energy Correlations in the Decay H→ZZ→μ+μ−μ+μ−H\to ZZ\to \mu^+\mu^-\mu^+\mu^-

    Full text link
    It is shown that in the sequential decay H→ZZ→(f1f1ˉ)+(f2f2ˉ)H\to ZZ\to (f_1\bar{f_1})+ (f_2\bar{f_2}), the energy distribution of the final state particles provides a simple and powerful test of the HZZHZZ vertex. For a standard Higgs boson, the energy spectrum of any final fermion, in the rest frame of HH, is predicted to be dΓ/dx∼1+β4−2(x−1)2d\Gamma /dx\sim 1+\beta^4-2(x-1)^2, with β=1−4mZ2/mH2\beta = \sqrt{1-4m^2_Z/m^2_H} and 1−β≤x=4E/mH≤1+β1-\beta \le x=4E/m_H\le 1+\beta . By contrast, the spectrum for a pseudoscalar Higgs is dΓ/dx∼β2+(x−1)2d\Gamma /dx \sim \beta^2+(x-1)^2. There are characteristic energy correlations between f1f_1 and f2f_2 and between f1f_1 and f2ˉ\bar{f_2}. These considerations are applied to the ``gold--plated'' reaction H→ZZ→μ+μ−μ+μ−H\to ZZ\to \mu^+\mu^-\mu^+\mu^-, including possible effects of CP--violation in the HZZHZZ coupling. Our formalism also yields the energy spectra and correlations of leptons in the decay H→W+W−→l+νll−νlˉH\to W^+W^-\to l^+\nu_ll^- \bar{\nu_l}.Comment: 14 pages + 4 figure

    Theory of Double-Sided Flux Decorations

    Full text link
    A novel two-sided Bitter decoration technique was recently employed by Yao et al. to study the structure of the magnetic vortex array in high-temperature superconductors. Here we discuss the analysis of such experiments. We show that two-sided decorations can be used to infer {\it quantitative} information about the bulk properties of flux arrays, and discuss how a least squares analysis of the local density differences can be used to bring the two sides into registry. Information about the tilt, compressional and shear moduli of bulk vortex configurations can be extracted from these measurements.Comment: 17 pages, 3 figures not included (to request send email to [email protected]

    Supersymmetric effects in top quark decay into polarized W-boson

    Full text link
    We investigate the one-loop supersymmetric QCD (SUSY-QCD) and electroweak (SUSY-EW) corrections to the top quark decay into a b-quark and a longitudinal or transverse W-boson. The corrections are presented in terms of the longitudinal ratio \Gamma(t-->W_L b)/\Gamma(t--> W b) and the transverse ratio \Gamma(t-->W_- b)/\Gamma(t--> W b). In most of the parameter space, both SUSY-QCD and SUSY-EW corrections to these ratios are found to be less than 1% in magnitude and they tend to have opposite signs. The corrections to the total width \Gamma(t-->W b) are also presented for comparison with the existing results in the literature. We find that our SUSY-EW corrections to the total width differ significantly from previous studies: the previous studies give a large correction of more than 10% in magnitude for a large part of the parameter space while our results reach only few percent at most.Comment: Version in PRD (explanation and refs added

    Searching For Anomalous τνW\tau \nu W Couplings

    Full text link
    The capability of current and future measurements at low and high energy e+e−e^+e^- colliders to probe for the existence of anomalous, CP conserving, τνW\tau \nu W dipole moment-type couplings is examined. At present, constraints on the universality of the tau charged and neutral current interactions as well as the shape of the τ→ℓ\tau \to \ell energy spectrum provide the strongest bounds on such anomalous couplings. The presence of these dipole moments are shown to influence, e.g., the extraction of αs(mτ2)\alpha_s(m_\tau^2) from τ\tau decays and can lead to apparent violations of CVC expectations.Comment: 24 pages, 9 figure

    The clinical course of actinic keratosis correlates with underlying molecular mechanisms

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154608/1/bjd18338_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154608/2/bjd18338.pd

    Vortex wandering in a forest of splayed columnar defects

    Full text link
    We investigate the scaling properties of single flux lines in a random pinning landscape consisting of splayed columnar defects. Such correlated defects can be injected into Type II superconductors by inducing nuclear fission or via direct heavy ion irradiation. The result is often very efficient pinning of the vortices which gives, e.g., a strongly enhanced critical current. The wandering exponent \zeta and the free energy exponent \omega of a single flux line in such a disordered environment are obtained analytically from scaling arguments combined with extreme-value statistics. In contrast to the case of point disorder, where these exponents are universal, we find a dependence of the exponents on details in the probability distribution of the low lying energies of the columnar defects. The analytical results show excellent agreement with numerical transfer matrix calculations in two and three dimensions.Comment: 11 pages, 9 figure

    The 1:1 resonance in Extrasolar Systems: Migration from planetary to satellite orbits

    Full text link
    We present families of symmetric and asymmetric periodic orbits at the 1/1 resonance, for a planetary system consisting of a star and two small bodies, in comparison to the star, moving in the same plane under their mutual gravitational attraction. The stable 1/1 resonant periodic orbits belong to a family which has a planetary branch, with the two planets moving in nearly Keplerian orbits with non zero eccentricities and a satellite branch, where the gravitational interaction between the two planets dominates the attraction from the star and the two planets form a close binary which revolves around the star. The stability regions around periodic orbits along the family are studied. Next, we study the dynamical evolution in time of a planetary system with two planets which is initially trapped in a stable 1/1 resonant periodic motion, when a drag force is included in the system. We prove that if we start with a 1/1 resonant planetary system with large eccentricities, the system migrates, due to the drag force, {\it along the family of periodic orbits} and is finally trapped in a satellite orbit. This, in principle, provides a mechanism for the generation of a satellite system: we start with a planetary system and the final stage is a system where the two small bodies form a close binary whose center of mass revolves around the star.Comment: to appear in Cel.Mech.Dyn.Ast

    Enhanced stability of the square lattice of a classical bilayer Wigner crystal

    Full text link
    The stability and melting transition of a single layer and a bilayer crystal consisting of charged particles interacting through a Coulomb or a screened Coulomb potential is studied using the Monte-Carlo technique. A new melting criterion is formulated which we show to be universal for bilayer as well as for single layer crystals in the case of (screened) Coulomb, Lennard--Jones and 1/r^{12} repulsive inter-particle interactions. The melting temperature for the five different lattice structures of the bilayer Wigner crystal is obtained, and a phase diagram is constructed as a function of the interlayer distance. We found the surprising result that the square lattice has a substantial larger melting temperature as compared to the other lattice structures. This is a consequence of the specific topology of the defects which are created with increasing temperature and which have a larger energy as compared to the defects in e.g. a hexagonal lattice.Comment: Accepted for publication in Physical Review

    Topological Defects, Orientational Order, and Depinning of the Electron Solid in a Random Potential

    Full text link
    We report on the results of molecular dynamics simulation (MD) studies of the classical two-dimensional electron crystal in the presence disorder. Our study is motivated by recent experiments on this system in modulation doped semiconductor systems in very strong magnetic fields, where the magnetic length is much smaller than the average interelectron spacing a0a_0, as well as by recent studies of electrons on the surface of helium. We investigate the low temperature state of this system using a simulated annealing method. We find that the low temperature state of the system always has isolated dislocations, even at the weakest disorder levels investigated. We also find evidence for a transition from a hexatic glass to an isotropic glass as the disorder is increased. The former is characterized by quasi-long range orientational order, and the absence of disclination defects in the low temperature state, and the latter by short range orientational order and the presence of these defects. The threshold electric field is also studied as a function of the disorder strength, and is shown to have a characteristic signature of the transition. Finally, the qualitative behavior of the electron flow in the depinned state is shown to change continuously from an elastic flow to a channel-like, plastic flow as the disorder strength is increased.Comment: 31 pages, RevTex 3.0, 15 figures upon request, accepted for publication in Phys. Rev. B., HAF94MD
    • …
    corecore