57 research outputs found

    Hypoxia Tolerance of 10 Euphausiid Species in Relation to Vertical Temperature and Oxygen Gradients

    Get PDF
    Oxygen Minimum Zones prevail in most of the world’s oceans and are particularly extensive in Eastern Boundary Upwelling Ecosystems such as the Humboldt and the Benguela upwelling systems. In these regions, euphausiids are an important trophic link between primary producers and higher trophic levels. The species are known as pronounced diel vertical migrators, thus facing different levels of oxygen and temperature within a 24 h cycle. Declining oxygen levels may lead to vertically constrained habitats in euphausiids, which consequently will affect several trophic levels in the food web of the respective ecosystem. By using the regulation index (RI), the present study aimed at investigating the hypoxia tolerances of different euphausiid species from Atlantic, Pacific as well as from Polar regions. RI was calculated from 141 data sets and used to differentiate between respiration strategies using median and quartile (Q) values: low degree of oxyregulation (0.25 0.25 or Q3 > 0.75); and metabolic suppression (RI median, Q1 and Q3 0) was identified for the neritic temperate species Thysanoessa spinifera and the tropical species Euphausia lamelligera. RI values of Euphausia distinguenda and the Humboldt species Euphausia mucronata qualified these as metabolic suppressors. RI showed a significant impact of temperature on the respiration strategy of E. hanseni from oxyregulation to metabolic suppression. The species’ estimated hypoxia tolerances and the degree of oxyconformity vs. oxyregulation were linked to diel vertical migration behavior and the temperature experienced during migration. The results highlight that the euphausiid species investigated have evolved various strategies to deal with different levels of oxygen, ranging from species showing a high degree of oxyconformity to strong oxyregulation. Neritic species may be more affected by hypoxia, as these are often short-distance-migrators and only adapted to a narrow range of environmental conditions

    Low-frequency noise pollution impairs burrowing activities of marine benthic invertebrates

    Get PDF
    Sounds from human activities such as shipping and seismic surveys have been progressively invading natural soundscapes and pervading oceanic ambient sounds for decades. Benthic invertebrates are important ecosystem engineers that continually rework the sediment they live in. Here, we tested how low-frequency noise (LFN), a significant component of noise pollution, affects the sediment reworking activities of selected macrobenthic invertebrates. In a controlled laboratory setup, the effects of acute LFN exposure on the behavior of three abundant bioturbators on the North Atlantic coasts were explored for the first time by tracking their sediment reworking and bioirrigation activities in noisy and control environments via luminophore and sodium bromide (NaBr) tracers, respectively. The amphipod crustacean Corophium volutator was negatively affected by LFN, exhibiting lower bioturbation rates and shallower luminophore burial depths compared to controls. The effect of LFN on the polychaete Arenicola marina and the bivalve Limecola balthica remained inconclusive, although A. marina displayed greater variability in bioirrigation rates when exposed to LFN. Furthermore, a potential stress response was observed in L. balthica that could reduce bioturbation potential. Benthic macroinvertebrates may be in jeopardy along with the crucial ecosystem-maintaining services they provide. More research is urgently needed to understand, predict, and manage the impacts of anthropogenic noise pollution on marine fauna and their associated ecosystems

    Effects of low-frequency noise and temperature on copepod and amphipod performance

    Get PDF
    Offshore wind farms (OWF) are bound to increase as a mitigation strategy to reduce the emission of greenhouse gases, it is crucial to address all of their potential impacts on key ecosystem components in detail. Especially, the chronic effect of noise created during OWF turbine operations (duration 20-25 years) must be understood. As sensitive receptors cover the whole body of crustaceans to detect their surroundings, those low frequency noises may disrupt basic ecological (prey detection and predator avoidance) and physiological (metabolism) functions. Here we present an investigation designed to understand the joint effect of noise and increased temperature on copepod. The pelagic copepod Acartia tonsa is commonly used as a proxy for a range of fundamental processes that relate to marine planktonic crustaceans. Given that higher temperatures increase metabolic demands, the experiment was conducted at three different temperature levels (18, 21, 24°C) combined with silent and noise treatments. We assessed the combined effects on energetic balance, and oxidative stress indicators. The outputs of the project will provide important information on the potential impact of low-frequency noise on marine invertebrate key organisms with implications for secondary production and ecosystem functioning

    Quantifying the portfolio of larval responses to salinity and temperature in a coastal-marine invertebrate: a cross population study along the European coast

    Get PDF
    portfolio available for a species to cope with and mitigate effects of climate change. Here, we quantified variation in larval survival and physiological rates of Carcinus maenas among populations occurring in distant or contrasting habitats (Cádiz: Spain, Helgoland: North Sea, Kerteminde: Baltic Sea). During the reproductive season, we reared larvae of these populations, in the laboratory, under a combination of several temperatures (15–24 °C) and salinities (25 and 32.5 PSU). In survival, all three populations showed a mitigating effect of high temperatures at lower salinity, with the strongest pattern for Helgoland. However, Cádiz and Kerteminde differed from Helgoland in that a strong thermal mitigation did not occur for growth and developmental rates. For all populations, oxygen consumption rates were driven only by temperature; hence, these could not explain the growth rate depression found at lower salinity. Larvae from Cádiz, reared in seawater, showed increased survival at the highest temperature, which differs from Helgoland (no clear survival pattern), and especially Kerteminde (decreased survival at high temperature). These responses from the Cádiz population correspond with the larval and parental habitat (i.e., high salinity and temperature) and may reflect local adaptation. Overall, along the European coast, C. maenas larvae showed a diversity of responses, which may enable specific populations to tolerate warming and subsidise more vulnerable populations. In such case, C. maenas would be able to cope with climate change through a spatial portfolio effect

    An integrated multiple driver mesocosm experiment reveals the effect of global change on planktonic food web structure

    Get PDF
    AbstractGlobal change puts coastal marine systems under pressure, affecting community structure and functioning. Here, we conducted a mesocosm experiment with an integrated multiple driver design to assess the impact of future global change scenarios on plankton, a key component of marine food webs. The experimental treatments were based on the RCP 6.0 and 8.5 scenarios developed by the IPCC, which were Extended (ERCP) to integrate the future predicted changing nutrient inputs into coastal waters. We show that simultaneous influence of warming, acidification, and increased N:P ratios alter plankton dynamics, favours smaller phytoplankton species, benefits microzooplankton, and impairs mesozooplankton. We observed that future environmental conditions may lead to the rise of Emiliania huxleyi and demise of Noctiluca scintillans, key species for coastal planktonic food webs. In this study, we identified a tipping point between ERCP 6.0 and ERCP 8.5 scenarios, beyond which alterations of food web structure and dynamics are substantial.</jats:p

    Higher temperature, increased CO2, and changing nutrient ratios alter the carbon metabolism and induce oxidative stress in a cosmopolitan diatom

    Get PDF
    Phytoplankton are responsible for about 90% of the oceanic primary production, largely supporting marine food webs, and actively contributing to the biogeochemical cycling of carbon. Yet, increasing temperature and pCO2, along with higher dissolved nitrogen: phosphorus ratios in coastal waters are likely to impact phytoplankton physiology, especially in terms of photosynthetic rate, respiration, and dissolved organic carbon (DOC) production. Here, we conducted a full-factorial experiment to identify the individual and combined effects of temperature, pCO2, and N : P ratio on the antioxidant capacity and carbon metabolism of the diatom Phaeodactylum tricornutum. Our results demonstrate that, among these three drivers, temperature is the most influential factor on the physiology of this species, with warming causing oxidative stress and lower activity of antioxidant enzymes. Furthermore, the photosynthetic rate was higher under warmer conditions and higher pCO2, and, together with a lower dark respiration rate and higher DOC exudation, generated cells with lower carbon content. An enhanced oceanic CO2 uptake and an overall stimulated microbial loop benefiting from higher DOC exudation are potential longer-term consequences of rising temperatures, elevated pCO2 as well as shifted dissolved N : P ratios

    A common temperature dependence of nutritional demands in ectotherms

    Get PDF
    In light of ongoing climate change, it is increasingly important to know how nutritional requirements of ectotherms are affected by changing temperatures. Here, we analyse the wide thermal response of phosphorus (P) requirements via elemental gross growth efficiencies of Carbon (C) and P, and the Threshold Elemental Ratios in different aquatic invertebrate ectotherms: the freshwater model species Daphnia magna, the marine copepod Acartia tonsa, the marine heterotrophic dinoflagellate Oxyrrhis marina, and larvae of two populations of the marine crab Carcinus maenas. We show that they all share a non-linear cubic thermal response of nutrient requirements. Phosphorus requirements decrease from low to intermediate temperatures, increase at higher temperatures and decrease again when temperature is excessive. This common thermal response of nutrient requirements is of great importance if we aim to understand or even predict how ectotherm communities will react to global warming and nutrient-driven eutrophication

    Comparison of Aerobic Scope for Metabolic Activity in Aquatic Ectotherms With Temperature Related Metabolic Stimulation: A Novel Approach for Aerobic Power Budget

    Get PDF
    Considering that swim-flume or chasing methods fail in the estimation of maximum metabolic rate and in the estimation of Aerobic Scope (AS) of sedentary or sluggish aquatic ectotherms, we propose a novel conceptual approach in which high metabolic rates can be obtained through stimulation of organism metabolic activity using high and low non-lethal temperatures that induce high (HMR) and low metabolic rates (LMR), This method was defined as TIMR: Temperature Induced Metabolic Rate, designed to obtain an aerobic power budget based on temperature-induced metabolic scope which may mirror thermal metabolic scope (TMS = HMR—LMR). Prior to use, the researcher should know the critical thermal maximum (CT max) and minimum (CT min) of animals, and calculate temperature TIMR max (at temperatures −5–10% below CT max) and TIMR min (at temperatures +5–10% above CT min), or choose a high and low non-lethal temperature that provoke a higher and lower metabolic rate than observed in routine conditions. Two sets of experiments were carried out. The first compared swim-flume open respirometry and the TIMR protocol using Centropomus undecimalis (snook), an endurance swimmer, acclimated at different temperatures. Results showed that independent of the method used and of the magnitude of the metabolic response, a similar relationship between maximum metabolic budget and acclimation temperature was observed, demonstrating that the TIMR method allows the identification of TMS. The second evaluated the effect of acclimation temperature in snook, semi-sedentary yellow tail (Ocyurus chrysurus), and sedentary clownfish (Amphiprion ocellaris), using TIMR and the chasing method. Both methods produced similar maximum metabolic rates in snook and yellowtail fish, but strong differences became visible in clownfish. In clownfish, the TIMR method led to a significantly higher TMS than the chasing method indicating that chasing may not fully exploit the aerobic power budget in sedentary species. Thus, the TIMR method provides an alternative way to estimate the difference between high and low metabolic activity under different acclimation conditions that, although not equivalent to AS may allow the standardized estimation of TMS that is relevant for sedentary species where measurement of AS via maximal swimming is inappropriate
    • 

    corecore