749 research outputs found

    Metallic liquid hydrogen and likely Al2O3 metallic glass

    Full text link
    Dynamic compression has been used to synthesize liquid metallic hydrogen at 140 GPa (1.4 million bar) and experimental data and theory predict Al2O3 might be a metallic glass at ~300 GPa. The mechanism of metallization in both cases is probably a Mott-like transition. The strength of sapphire causes shock dissipation to be split differently in the strong solid and soft fluid. Once the 4.5-eV H-H and Al-O bonds are broken at sufficiently high pressures in liquid H2 and in sapphire (single-crystal Al2O3), electrons are delocalized, which leads to formation of energy bands in fluid H and probably in amorphous Al2O3. The high strength of sapphire causes shock dissipation to be absorbed primarily in entropy up to ~400 GPa, which also causes the 300-K isotherm and Hugoniot to be virtually coincident in this pressure range. Above ~400 GPa shock dissipation must go primarily into temperature, which is observed experimentally as a rapid increase in shock pressure above ~400 GPa. The metallization of glassy Al2O3, if verified, is expected to be general in strong oxide insulators. Implications for Super Earths are discussed.Comment: 8 pages, 5 figures, 14th Liquid and Amorphous Metals Conference, Rome 201

    Simulated meteorite impacts and volcanic explosions: Ejecta analyses and planetary implications

    Get PDF
    Past cratering studies have focused primarily on crater morphology. However, important questions remain about the nature of crater deposits. Phenomena that need to be studied include the distribution of shock effects in crater deposits and crater walls; the origin of mono- and polymict breccia; differences between local and distal ejecta; deformation induced by explosive volcanism; and the production of unshocked, high-speed ejecta that could form the lunar and martian meteorites found on the Earth. To study these phenomena, one must characterize ejecta and crater wall materials from impacts produced under controlled conditions. New efforts at LLNL simulate impacts and volcanism and study resultant deformation. All experiments use the two-stage light-gas gun facility at LLNL to accelerate projectiles to velocities of 0.2 to 4.3 km/s, including shock pressures of 0.9 to 50 GPa. We use granite targets and novel experimental geometries to unravel cratering processes in crystalline rocks. We have thus far conducted three types of simulations: soft recovery of ejecta, 'frozen crater' experiments, and an 'artificial volcano. Our ejecta recovery experiments produced a useful separation of impactites. Material originally below the projectile remained trapped there, embedded in the soft metal of the flyer plate. In contrast, material directly adjacent to the projectile was jetted away from the impact, producing an ejecta cone that was trapped in the foam recovery fixture. We find that a significant component of crater ejecta shows no signs of strong shock; this material comes from the near-surface 'interference zone' surrounding the impact site. This phenomenon explains the existence of unshocked meteorites on the Earth of lunar and martian origin. Impact of a large bolide on neighboring planets will produce high-speed, weakly shocked ejecta, which may be trapped by the Earth's gravitational field. 'Frozen crater' experiments show that the interference zone is highly localized; indeed, disaggregation does not extend beyond approx. 1.5 crater radii. A cone-shaped region extending downward from the impact site is completely disaggregated, including powdered rock that escaped into the projectile tube. Petrographic analysis of crater ejecta and wall material will be presented. Finally, study of ejecta from 0.9- and 1.3-GPa simulations of volcanic explosions reveal a complete lack of shock metamorphism. The ejecta shows no evidence of PDF's, amorphization, high-pressure phases, or mosaicism. Instead, all deformation was brittle, with fractures irregular (not planar) and most intergranular. The extent of fracturing was remarkable, with the entire sample reduced to fragments of gravel size and smaller

    Tables of elliptic integrals

    Get PDF
    Elliptic integral tables for evaluation of integrals with algebraic or trigonometric integrand
    • …
    corecore