13 research outputs found

    Äußerungsrechte staatlicher Funktionsträger

    No full text

    Fine-grained age-matching improves atrophy-based detection of mild cognitive impairment more than amyloid-negative reference subjects

    No full text
    Introduction: In clinical practice, differentiating between age-related gray matter (GM) atrophy and neurodegeneration-related atrophy at early disease stages, such as mild cognitive impairment (MCI), remains challenging. We hypothesized that fined-grained adjustment for age effects and using amyloid-negative reference subjects could increase classification accuracy. Methods: T1-weighted magnetic resonance imaging (MRI) data of 131 cognitively normal (CN) individuals and 91 patients with MCI from the Alzheimer’s disease neuroimaging initiative (ADNI) characterized concerning amyloid status, as well as 19 CN individuals and 19 MCI patients from an independent validation sample were segmented, spatially normalized and analyzed in the framework of voxel-based morphometry (VBM). For each participant, statistical maps of GM atrophy were computed as the deviation from the GM of CN reference groups at the voxel level. CN reference groups composed with different degrees of age-matching, and mixed and strictly amyloid-negative CN reference groups were examined regarding their effect on the accuracy in distinguishing between CN and MCI. Furthermore, the effects of spatial smoothing and atrophy threshold were assessed. Results: Approaches with a specific reference group for each age significantly outperformed all other age-adjustment strategies with a maximum area under the curve of 1.0 in the ADNI sample and 0.985 in the validation sample. Accounting for age in a regression-based approach improved classification accuracy over that of a single CN reference group in the age range of the patient sample. Using strictly amyloid-negative reference groups improved classification accuracy only when age was not considered. Conclusion: Our results demonstrate that VBM can differentiate between age-related and MCI-associated atrophy with high accuracy. Crucially, age-specific reference groups significantly increased accuracy, more so than regression-based approaches and using amyloid-negative reference groups

    Entorhinal Tau Predicts Hippocampal Activation and Memory Deficits in Alzheimer's Disease

    No full text
    Background: To date, it remains unclear how amyloid plaques and neurofibrillary tangles are related to neural activation and, consequently, cognition in Alzheimer's disease (AD). Recent findings indicate that tau accumulation may drive hippocampal hyperactivity in cognitively normal aging, but it remains to be elucidated how tau accumulation is related to neural activation in AD. Objective: To determine whether the association between tau accumulation and hippocampal hyperactivation persists in mild cognitive impairment (MCI) and mild dementia or if the two measures dissociate with disease progression, we investigated the relationship between local tau deposits and memory-related neural activation in MCI and mild dementia due to AD. Methods: Fifteen patients with MCI or mild dementia due to AD underwent a neuropsychological assessment and performed an item memory task during functional magnetic resonance imaging. Cerebral tau accumulation was assessed using positron emission tomography and [F-18]-AV-1451. Results: Entorhinal, but not global tau accumulation, was highly correlated with hippocampal activation due to visual item memory encoding and predicted memory loss over time. Neural activation in the posterior cingulate cortex and the fusiform gyrus was not significantly correlated with tau accumulation. Conclusion: These findings extend previous observations in cognitively normal aging, demonstrating that entorhinal tau continues to be closely associated with hippocampal hyperactivity and memory performance in MCI and mild dementia due to AD. Furthermore, data suggest that this association is strongest in medial temporal lobe structures. In summary, our data provide novel insights into the relationship of tau accumulation to neural activation and memory in AD

    Specific and disease stage-dependent episodic memory-related brain activation patterns in Alzheimer's disease: a coordinate-based meta-analysis.

    No full text
    Episodic memory is typically affected during the course of Alzheimer's disease (AD). Due to the pronounced heterogeneity of functional neuroimaging studies on episodic memory impairments in mild cognitive impairment (MCI) and AD regarding their methodology and findings, we aimed to delineate consistent episodic memory-related brain activation patterns. We performed a systematic, quantitative, coordinate-based whole-brain activation likelihood estimation meta-analysis of 28 functional magnetic resonance imaging (fMRI) studies comprising 292 MCI and 102 AD patients contrasted to 409 age-matched control subjects. We included episodic encoding and/or retrieval phases, investigated the effects of group, verbal or image stimuli and correlated mean Mini-Mental-Status-Examination (MMSE) scores with the modelled activation estimates. MCI patients presented increased right hippocampal activation during memory encoding, decreased activation in the left hippocampus and fusiform gyrus during retrieval tasks, as well as attenuated activation in the right anterior insula/inferior frontal gyrus during verbal retrieval. In AD patients, however, stronger activation within the precuneus during encoding tasks was accompanied by attenuated right hippocampal activation during retrieval tasks. Low cognitive performance (MMSE scores) was associated with stronger activation of the precuneus and reduced activation of the right (para)hippocampus and anterior insula/inferior frontal gyrus. This meta-analysis provides evidence for a specific and probably disease stage-dependent brain activation pattern related to the pathognomonic AD characteristic of episodic memory loss

    Spatial distributions of cholinergic impairment and neuronal hypometabolism differ in MCI due to AD

    No full text
    Elucidating the relationship between neuronal metabolism and the integrity of the cholinergic system is prerequisite for a profound understanding of cholinergic dysfunction in Alzheimer's disease. The cholinergic system can be investigated specifically using positron emission tomography (PET) with [C-11] N-methyl-4-piperidyl-acetate (MP4A), while neuronal metabolism is often assessed with 2-deoxy-2-[F-18]fluoro-D-glucose-(FDG) PET. We hypothesised a close correlation between MP4A-perfusion and FDG-uptake, permitting inferences about metabolism from MP4A-perfusion, and investigated the patterns of neuronal hypometabolism and cholinergic impairment in non-demented AD patients. MP4A-PET was performed in 18 cognitively normal adults and 19 patients with mild cognitive impairment (MCI) and positive AD biomarkers. In nine patients with additional FDG-PET, the sum images of every combination of consecutive early MP4A-frames were correlated with FDG-scans to determine the optimal time window for assessing MP4A-perfusion. Acetylcholinesterase (AChE) activity was estimated using a 3-compartmental model. Group comparisons of MP4A-perfusion and AChE-activity were performed using the entire sample. The highest correlation between MP4A-perfusion and FDG-uptake across the cerebral cortex was observed 60-450 s after injection (r = 0.867). The patterns of hypometabolism (FDG-PET) and hypoperfusion (MP4A-PET) in MCI covered areas known to be hypometabolic early in AD, while AChE activity was mainly reduced in the lateral temporal cortex and the occipital lobe, sparing posterior midline structures. Data indicate that patterns of cholinergic impairment and neuronal hypometabolism differ significantly at the stage of MCI in AD, implying distinct underlying pathologies, and suggesting potential predictors of the response to cholinergic pharmacotherapy

    Changes in brain activation related to visuo-spatial memory after real-time fMRI neurofeedback training in healthy elderly and Alzheimer's disease

    Get PDF
    Cognitive decline is a symptom of healthy ageing and Alzheimer's disease. We examined the effect of real-time fMRI based neurofeedback training on visuo-spatial memory and its associated neuronal response. Twelve healthy subjects and nine patients of prodromal Alzheimer's disease were included. The examination spanned five days (T1-T5): T1 contained a neuropsychological pre-test, the encoding of an itinerary and a fMRI-based task related that itinerary. T2-T4 hosted the real-time fMRI neurofeedback training of the parahippocampal gyrus and on T5 a post-test session including encoding of another itinerary and a subsequent fMRIbased task were done. Scores from neuropsychological tests, brain activation and task performance during the fMRI-paradigm were compared between pre and post-test as well as between healthy controls and patients. Behavioural performance in the fMRI-task remained unchanged, while cognitive testing showed improvements in visuo-spatial memory performance. Both groups displayed task-relevant brain activation, which decreased in the right precentral gyrus and left occipital lobe from pre to post-test in controls, but increased in the right occipital lobe, middle frontal gyrus and left frontal lobe in the patient group. While results suggest that the training has affected brain activation differently between controls and patients, there are no pointers towards a behavioural manifestation of these changes. Future research is required on the effects that can be induced using real-time fMRI based neurofeedback training and the required training duration to elicit broad and lasting effects

    Differential neural structures, intrinsic functional connectivity, and episodic memory in subjective cognitive decline and healthy controls

    No full text
    The neural correlates of subjective cognitive decline (SCD; i.e., without objectifiable deficit) remain to be elucidated. Possible causes of SCD include early neurodegeneration related to Alzheimer's disease or functional and structural changes related to sub-clinical depression.We investigated the relationship between episodic memory performance or memory complaints and structural or functional magnetic resonance imaging (MRI) measures in participants with SCD (n=18) but without psychiatric disorders and healthy controls (n=31).In SCD, memory complaints were not associated with memory performance but with sub-clinical depression and executive functions. SCD-associated memory complaints correlated with higher amygdala and parahippocampal gyrus (specifically subiculum) gray matter density. In controls, but not in SCD, mesiotemporal gray matter density and superior frontal gyrus functional connectivity predicted memory performance. In contrast, in SCD, only a trend toward a correlation between memory performance and gray matter density in the parietooccipital lobes was observed.In our memory-clinic sample of SCD, we did not observe incipient neurodegeneration (limited to structural and functional MRI) but rather sub-clinical depression underlying subjective cognitive complaints
    corecore