5 research outputs found

    Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Comparing in vitro 2D and 3D-tumor model of triple-negative breast cancer

    No full text
    This manuscript describes a ultra-high loaded nanoformulation of curcumin. This compound is extremely water insoluble but could be dissolved using poly(2-oxazoline)/poly(2-oxazine) based polymer amphiphiles. The resulting formulations were thoroughly characterized in solution and solid form by NMR, dynamic light scattering, electron microscopy, HPLC zeta potential measurements, XRD, respectively. Biological activity was ensured and compared in 2D and 3D cell culture

    Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Comparing in vitro 2D and 3D-tumor model of triple-negative breast cancer

    No full text
    This manuscript describes a ultra-high loaded nanoformulation of curcumin. This compound is extremely water insoluble but could be dissolved using poly(2-oxazoline)/poly(2-oxazine) based polymer amphiphiles. The resulting formulations were thoroughly characterized in solution and solid form by NMR, dynamic light scattering, electron microscopy, HPLC zeta potential measurements, XRD, respectively. Biological activity was ensured and compared in 2D and 3D cell culture

    Drug induced micellization into ultra-high capacity and stable curcumin nanoformulations: Physico-chemical characterization and evaluation in 2D and 3D in vitro models

    No full text
    Curcumin (CUR) ist ein natürlicher Extrakt aus der Pflanze Curcuma longa und Teil von Kurkuma, einem Gewürz- und Kräuterhilfsmittel in der traditionellen Medizin. Tausende von Veröffentlichungen behaupten, dass eine Vielzahl von gesundheitlichen Vorteilen von CUR vorhanden sei, aber eine wachsende Anzahl von Berichten und Beiträgen warnen davor, dass viele experimentelle Daten Artefakte sein könnten oder jegliche Eignung von CUR aufgrund seiner problematischen physikochemischen Eigenschaften bestreiten. Zwei Hauptprobleme, mit denen CUR häufig konfrontiert wird, sind die außerordentlich geringe Wasserlöslichkeit und die begrenzte chemische Stabilität. Hier berichten wir über eine neuartige CUR-Nanoformulierung, die CUR-Konzentrationen in Wasser von mindestens 50 g / l mit relativen Wirkstoffbeladungen von> 50 Gew .-% und hohe Wirksamkeitstests in 3D-Tumormodellen ermöglicht. Trotz dieser hohen Beladung und Konzentration enthält die CUR-Nanoformulierung Polymer-Wirkstoff-Aggregate mit einer Größe <50 nm. Am interessantesten wird dies unter Verwendung eines amphiphilen Blockcopolymers erreicht, das aufgrund seines begrenzten hydrophilen / lipophilen Kontrasts selbst keine Mizellen bildet. Die ultrahochbeladenen Nanoformulierungen zeigen eine sehr gute Stabilität, Reproduzierbarkeit und Redispergierbarkeit. Um die Auswirkungen von CUR unter Bedingungen zu testen, die einer in vivo-Situation näher kommen, haben wir ein 3D-Tumortestsystem verwendet, das auf einer biologisch dezellularisierten Gewebematrix basiert, die besser mit den klinischen Ergebnissen in Bezug auf Medikamententests korreliert. Wir fanden heraus, dass die invasiv wachsende Brustkrebszelllinie MDA-MB-231 im Vergleich zur 2D-Kultur hohe CUR-Konzentrationen für die Tumorzell-Eradikation in 3D erfordert. Darüber hinaus ergänzten wir ein 3D-Darmkrebsmodell der malignen Zelllinie SW480 mit Fibroblasten und beobachteten auch in diesem invasiven Tumormodell mit Stromakomponenten eine Abnahme des Tumorzellwachstums nach CUR-Applikation, die mit einem Verlust von Zell-Zell-Kontakten in Tumorzellclustern einherging . In einem Fließbioreaktor, der die Verbreitung von Krebszellen simuliert, verhinderten nanoformulierte CUR, dass SW480-Zellen an einem Kollagengerüst haften, was auf ein antimetastatisches Potenzial von CUR schließen lässt. Dies bietet einen Grund dafür, dass die vorgestellte ultrahohe CUR-beladene Nanoformulierung als Werkzeug zur Ausschöpfung des gesamten therapeutischen Potenzials von CUR betrachtet werden kann

    ROR1-CAR T cells are effective against lung and breast cancer in advanced microphysiologic 3D tumor models

    No full text
    Solid tumors impose immunologic and physical barriers to the efficacy of chimeric antigen receptor (CAR) T cell therapy that are not reflected in conventional preclinical testing against singularized tumor cells in 2-dimensional culture. Here, we established microphysiologic three-dimensional (3D) lung and breast cancer models that resemble architectural and phenotypical features of primary tumors and evaluated the antitumor function of receptor tyrosine kinase-like orphan receptor 1-specific (ROR1-specific) CART cells. 30 tumors were established from A549 (non-small cell lung cancer) and MDA-MB-231 (triple-negative breast cancer) cell lines on a biological scaffold with intact basement membrane (BM) under static and dynamic culture conditions, which resulted in progressively increasing cell mass and invasive growth phenotype (dynamic > static; MDA-MB-231 > A549). Treatment with ROR1-CAR T cells conferred potent antitumor effects. In dynamic culture, CART cells actively entered arterial medium flow and adhered to and infiltrated the tumor mass. ROR1-CAR T cells penetrated deep into tumor tissue and eliminated multiple layers of tumor cells located above and below the BM. The microphysiologic 3D tumor models developed in this study are standardized, scalable test systems that can be used either in conjunction with or in lieu of animal testing to interrogate the antitumor function of CART cells and to obtain proof of concept for their safety and efficacy before clinical application

    Modular micro-physiological human tumor/tissue models based on decellularized tissue for improved preclinical testing

    No full text
    High attrition-rates entailed by drug testing in 2D cell culture and animal models stress the need for improved modeling of human tumor tissues. In previous studies our 3D models on a decellularized tissue matrix have shown better predictivity and higher chemoresistance. A single porcine intestine yields material for 150 3D models of breast, lung, colorectal cancer (CRC) or leukemia. The uniquely preserved structure of the basement membrane enables physiological anchorage of endothelial cells and epithelial-derived carcinoma cells. The matrix provides different niches for cell growth: on top as monolayer, in crypts as aggregates and within deeper layers. Dynamic culture in bioreactors enhances cell growth. Comparing gene expression between 2D and 3D cultures, we observed changes related to proliferation, apoptosis and stemness. For drug target predictions, we utilize tumor-specific sequencing data in our in silico model finding an additive effect of metformin and gefitinib treatment for lung cancer in silico, validated in vitro. To analyze mode-of-action, immune therapies such as trispecific T-cell engagers in leukemia, as well as toxicity on non-cancer cells, the model can be modularly enriched with human endothelial cells (hECs), immune cells and fibroblasts. Upon addition of hECs, transmigration of immune cells through the endothelial barrier can be investigated. In an allogenic CRC model we observe a lower basic apoptosis rate after applying PBMCs in 3D compared to 2D, which offers new options to mirror antigen-specific immunotherapies in vitro. In conclusion, we present modular human 3D tumor models with tissue-like features for preclinical testing to reduce animal experiments
    corecore