22 research outputs found

    Cytological and Other Aspects of Pathogenesis-related Gene Expression in Tomato Plants Grown on a Suppressive Compost

    No full text
    • Background and Aims Recent studies have shown that certain composts may trigger indirect defence mechanisms by sensitizing the plant to create an increased state of resistance, similar to systemic acquired resistance. In this study, the capacity of a disease-suppressive compost to alter the expression pattern of certain pathogenesis-related (PR) genes in the root system of tomato plants (Solanum lycopersicum) provided the opportunity to study their cellular expression pattern and to investigate putative roles of these genes in the mechanisms of plant defence

    Cytological and other aspects of pathogenesis-related gene expression in tomato plants grown on a suppressive compost

    No full text
    center dot Background and Aims Recent studies have shown that certain composts may trigger indirect defence mechanisms by sensitizing the plant to create an increased state of resistance, similar to systemic acquired resistance. In this study, the capacity of a disease-suppressive compost to alter the expression pattern of certain pathogenesis-related (PR) genes in the root system of tomato plants (Solanum lycopersicum) provided the opportunity to study their cellular expression pattern and to investigate putative roles of these genes in the mechanisms of plant defence. center dot Methods Employing the reverse transcription-polymerase chain reaction (RT-PCR) and in situ RNA:RNA hybridization techniques, the accumulation and distribution of the transcripts of the differentially expressed PR genes were examined in plants grown on compost and compared with those of control plants grown on peat. center dot Key Results Elevated levels of expression of the pathogenesis-related genes PR-1, PR-5 and P69/PR-7 were detected in the roots of tomato plants grown on the compost. A clearly distinguished spatial induction pattern was observed for these PR genes: PR-1 transcripts were almost exclusively detected in the pericycle cells surrounding the root stele of the main and lateral roots; PR-5 transcripts were present in the phloem of the root and stem tissues; and the accumulation and distribution of PR-7 transcripts was detected in discrete groups of cells that appeared sporadically in both the parenchyma and vascular system of the root, suggesting that the gene is not expressed in a tissue-specific manner. In addition, a novel cDNA clone was isolated (P69G), which probably encodes a new tomato P69 isoform. center dot Conclusions This study provides evidence that a supressive compost is able to elicit consistent and increased expression of certain PR genes in the roots of tomato plants, even in the absence of any pathogen. The in situ localization studies reveal expression patterns which are in accordance with the presence of protein or with the putative roles of the respective encoded proteins. The expression of the PR genes may be triggered by the microflora of the compost or could be associated with abiotic factors of the compost

    Genetic diversity of Barbary fig (Opuntia ficus-indica) collection in Greece with ISSR molecular markers

    Get PDF
    AbstractBarbary fig (Opuntia ficus indica) could be an economically important species as it could be an alternative crop extremely tolerant to dry condition and water deficiency. Moreover, it could be used in alternative sustainable cultivation systems and landscape conservation. In this work, we report the analysis of the genetic diversity of Greek Barbary fig genotypes using ISSR molecular markers. Six primers were screened to assess their ability to detect polymorphisms within twenty-two Barbary fig accessions and generated 57 markers (bands), with an average of 9.5 markers per primer. The percentage of polymorphic bands (50.21%) and the resolving power (RP) (28.85) showed the efficiency of the used primers. Mean values for GD (gene diversity) and I (Shannon index) were found as 0.215 and 0.355, respectively. The revealed ISSR markers allow distinguishing all accessions analyzed except for one case. UPGMA dendrogram and PCoA (Principal Coordinate Analysis) were performed to access patterns of diversity among genotypes. The high genetic diversity existing in the Greek germplasm suggests that it would be beneficial to utilize this pool in Barbary fig breeding programs and germplasm management activities

    The Effect of Low Temperature on Physiological, Biochemical and Flowering Functions of Olive Tree in Relation to Genotype

    No full text
    Olive tree growth and reproduction are severely affected by temperature extremes, compromising fruit yield. In that aspect, the olive varieties “Koroneiki” and “Mastoidis” were employed in a mild cold stress experiment, imitating night frost incidents to assess their biochemical, physiological and reproductive functions in relation to genotype. The physiological performance of the stressed plants was not significantly altered, suggesting that both cultivars were well adapted to mild cold night stress. The biochemical response of the plants, regarding antioxidant enzymes, H2O2 and TBARS accumulation, confirmed that both cultivars could cope with the stress applied. The mRNA levels of the PPO gene, which participates in hydroxytyrosol biosynthesis and plant defense, were elevated after 24-h stress at 0 °C, in both cultivars with “Mastoidis” plants exhibiting higher levels for a longer period. Three more genes involved in hydroxytyrosol biosynthesis upregulated their expression levels as a response to cold stress. The numerous plant phenology aspects measured reinforced the conclusion that both cultivars responded to the stress applied. The results of the present study may contribute to better understanding olive tree adaptive responses to low temperature events, an abiotic stress condition that is often present in an open plantation, thus assisting farmers on breeding and cultivar selection

    Tomato Inoculation With the Endophytic Strain Fusarium solani K Results in Reduced Feeding Damage by the Zoophytophagous Predator Nesidiocoris tenuis

    No full text
    Belowground symbiosis of plants with beneficial microbes is known to confer resistance to aboveground pests such as herbivorous arthropods and pathogens. Similarly, microbe-induced plant responses may also impact natural enemies of pests via the elicitation of plant defense responses and/or alteration of plant quality and growth. Nesidiocoris tenuis is a zoophytophagous predator and an efficient biological control agent of greenhouse pests. Its usefulness in plant protection is often hindered by its ability to damage plants at high predator population densities or when prey is scarce. In this study, we investigated the effect of Fusarium solani strain K (FsK), an endophytic fungal isolate that colonizes tomato root tissues, on the capability of N. tenuis to cause necrotic rings, an easily discernible symptom, on tomato stems and leaves. We found significantly less necrotic rings formed on FsK-inoculated plants for all tomato cultivars tested. FsK has been previously shown to confer ethylene-mediated tomato resistance to both foliar and root fungal pathogens; thus, the ethylene-insensitive Never ripe (Nr) and epinastic (epi) tomato plant mutant lines were included in our study to assess the role of ethylene in the recorded FsK-mediated plant damage reduction. The jasmonic acid (JA)-biosynthesis tomato mutant def-1 was also used since JA is known to mediate major anti-herbivore plant responses. We show that ethylene and JA are required for FsK to efficiently protect tomato plants from N. tenuis feeding. No necrotic rings were recorded on FsK-inoculated epi plants suggesting that ethylene overproduction may be key to tomato resistance to N. tenuis feeding
    corecore