51 research outputs found

    Traditional and transgenic strategies for controlling tomato-infecting begomoviruses

    Full text link

    Specific detection of p-chlorobenzoic acid by Escherichia coli bearing a plasmid-borne fcbA':: lux fusion

    No full text
    Rozen Y, Nejidat A, Gartemann K-H, Belkin S. Specific detection of p-chlorobenzoic acid by Escherichia coli bearing a plasmid-borne fcbA':: lux fusion. CHEMOSPHERE. 1999;38(3):633-641.In this communication we report on a genetically engineered bacterium that reacts by light emission to the presence of 4-chlorobenzoic acid. To construct this strain, DNA fragment (1.7 kb) upstream from the 4-chlorobenzoic acid dehalogenase (fcb) operon of Arthrobacter SU was fused to Vibrio fischeri luxCDABE genes. An Escherichia coli strain transformed with a multi-copy plasmid (pASU) bearing this fusion responded to the presence of 4-chlorobenzoic acid and a few closely related compounds by increased luminescence, exhibiting a high specificity but a relatively low sensitivity. While it could be somewhat, improved by manipulating the experimental pH, sensitivity remained too low for real time applicability. Nevertheless, the principle of using dehalogenase promoters as environmental pollution sensor was demonstrated. (C) 1998 Elsevier Science Ltd. All rights reserved

    Controlling nitritation in a continuous split-feed/aeration biofilm nitrifying bioreactor

    Full text link
    © 2019 Elsevier Ltd This study explored the stability of partial ammonium oxidation at low feed concentration (50 g N/m3), suitable for anammox process, in continuous fixed bed up-flow biofilm reactors with external recirculation-aeration. The reactors, filled with crushed basalt, were fed with synthetic medium at 20–25 °C at constant flow-rate with limiting dissolved oxygen concentration controlled by the recirculation ratio (R). Successful nitritation was achieved at R ≅ 4–6 with approx. 50% of NH4+ oxidized to NO2- with <5% NO3-accumulation. q-PCR analysis along the reactor showed ammonia oxidizing bacteria being the prevalent nitrifiers over the three-fourths of the bed in the flow direction, negligible denitrifiers and absent ammonium oxidizing archaea. A numerical model for predicting the concentration of the nitrogen species and DO was formulated. The model successfully predicted the experimental results and displayed good sensitivity to intrinsic oxygen uptake parameters. The proposed numerical model can serve both as an operational and design tool

    Abundance and diversity of anammox bacteria in a mainstream municipal wastewater treatment plant

    Full text link
    © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. Among the factors that obstruct the application of anammox-based technology for nitrogen removal from mainstream municipal wastewater is the water’s high organic loads. We hypothesized that some anammox species can adapt and grow in mainstream wastewater in which a minimal temperature of 13–15 °C is maintained. Using the AMX368F and AMX820R PCR-primers, anammox bacteria were detected in influent wastewater (COD/N ratio > 13) and in the anaerobic, anoxic, and aerobic chambers of a full-scale municipal wastewater treatment plant, reaching 107 copies/g VSS of the16S rRNA gene. Furthermore, anammox activity was demonstrated by 15N-isotopic tracing. The DNA sequences of clones randomly selected from a clone library were mainly clustered with Candidatus Brocadia flugida in addition to Ca. Brocadia sinica, Ca. Jettenia asiatica, and Ca. Anammoxoglobus propionicus. However, Ca. Brocadia was the only genus detected by high-throughput next-generation sequencing and denaturing gradient gel electrophoresis. The nitrite producers, ammonia-oxidizing archaea and bacteria, were both detected in the influent wastewater and the other chambers, while the nitrite consumers, Nitrospira nitrite oxidizers and the nirS-type denitrifiers, dominated all chambers. The results indicate the occurrence and potential activity of anammox bacteria in mainstream wastewater under certain conditions (proper temperature). The dominance of Brocadia flugida and Anammoxoglobus propionicus suggests a role for volatile fatty acids in selecting the anammox community in wastewater
    • 

    corecore