2 research outputs found

    Estimation of unmeasurable vibration of a rotating machine using Kalman filter

    No full text
    Abstract Rotating machines are typically equipped with vibration sensors at the bearing location and the information from these sensors is used for condition monitoring. Installing additional sensors may not be possible due to limitations of the installation and cost. Thus, the internal condition of machines might be difficult to evaluate. This study presents a numerical and experimental study on the case of a rotor supported by four rolling element bearings (REBs). As such, the study resembles a complex real-life industrial multi-fault scenario: a lack of information, uncertainties, and nonlinearities increase the overall complexity of the system. The study provides a methodology for modeling and analyzing complicated systems without prior information. First, the unknown model parameters of the system are approximated using measurement data and the linearized model. Thereafter, the Unscented Kalman Filter (UKF) is applied to the estimation of the vibration characteristics in unmeasured locations. As a result, the estimation of unmeasured vibration characteristics has a reasonable agreement with the rotor whirling, and the estimated results are within a 95% confidence interval. The proposed methodology can be considered as a transfer learning method that can be further used in other identification problems in the field of rotating machinery

    Physics-based digital twins merging with machines:cases of mobile log crane and rotating machine

    No full text
    Abstract Real-world products and physics-based simulations are becoming interconnected. In particular, real-time capable dynamic simulation has made it possible for simulation models to run in parallel and simultaneously with operating machinery. This capability combined with state observer techniques such as Kalman filtering have enabled the synchronization between simulation and the real world. State estimator techniques can be applied to estimate unmeasured quantities, also referred as virtual sensing, or to enhance the quality of measured signals. Although synchronized models could be used in a number of ways, value creation and business model development are currently defining the most practical and beneficial use cases from a business perspective. The research reported here reveals the communication and collaboration methods that lead to economically relevant technology solutions. Two case examples are given that demonstrate the proposed methodology. The work benefited from the broad perspective of researchers from different backgrounds and the joint effort to drive the technology development towards business relevant cases
    corecore