524 research outputs found

    Constraining the Temperature of Impact Melt from the Mistastin Lake Impact Structure Using Zircon Crystal Structures

    Get PDF
    Impact melt is a product of hyper-velocity impact events formed by the instantaneous melting of near-surface target rocks. Constraining the temperature of impact melt is vital to understanding its prograde heating and cooling history, which can have implications for inferring the environment of early Earth ~4.0 billion years ago when microbial life potentially arose. To date, only one datum on the initial impact melt temperature has been derived by Timms et al. These authors studied zirconia microstructures and crystallographic orientations that revealed the former presence of cubic zirconia, found in a black impact glass at the Mistastin Lake impact structure, Canada. The presence of cubic zirconia indicates a minimum temperature for the impact melt of >2370C from the dissociation temperature of zircon to cubic zirconia and liquid SiO2. With only one temperature datum, it is still difficult to constrain the entire temperature range experienced during the impact melting process; from its instantaneous formation to thermal equilibrium with the cold clasts collected along the crater floor and walls. In addition, obtaining a temperature value from only one type of impactite limits the inferred temperature range, because each impactite experiences a different cooling history. In this study, we present a preliminary investigation of 61 zircon crystals, 14 of which are similar to those studied by Timms et al., from the Mistastin Lake impact structure. To acquire a more accurate temperature profile representative of impact melt, zircon crystals were collected from different types of impactites containing impact melt, including additional samples of the black impact glass studied by Timms et al

    Satellite Navigation for the Age of Autonomy

    Full text link
    Global Navigation Satellite Systems (GNSS) brought navigation to the masses. Coupled with smartphones, the blue dot in the palm of our hands has forever changed the way we interact with the world. Looking forward, cyber-physical systems such as self-driving cars and aerial mobility are pushing the limits of what localization technologies including GNSS can provide. This autonomous revolution requires a solution that supports safety-critical operation, centimeter positioning, and cyber-security for millions of users. To meet these demands, we propose a navigation service from Low Earth Orbiting (LEO) satellites which deliver precision in-part through faster motion, higher power signals for added robustness to interference, constellation autonomous integrity monitoring for integrity, and encryption / authentication for resistance to spoofing attacks. This paradigm is enabled by the 'New Space' movement, where highly capable satellites and components are now built on assembly lines and launch costs have decreased by more than tenfold. Such a ubiquitous positioning service enables a consistent and secure standard where trustworthy information can be validated and shared, extending the electronic horizon from sensor line of sight to an entire city. This enables the situational awareness needed for true safe operation to support autonomy at scale.Comment: 11 pages, 8 figures, 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS

    Hot Rocks: Constraining the Thermal Conditions of the Mistastin Lake Impact Melt Deposits Using Zircon Grain Microstructures

    Get PDF
    The production of superheated melt during hypervelocity impact events has been proposed to be a common occurrence on terrestrial planetary bodies. Recent direct evidence of superheated impact melt temperatures exceeding \u3e2370°C from the Kamestastin (Mistastin Lake) impact structure, Canada, was based on a single impact glass sample. Such high superheated melt temperatures have strong implications for the evolution of crustal material, the thermal history of impact cratering events, and the rheology of impact melt. However, although widely predicted in previous studies, with the exception of the Mistastin Lake impact glass, there is little direct evidence for superheated temperatures in multiple settings across an impact structure. Therefore, an outstanding question is how heterogeneous are superheated conditions across a single impact structure. In this work, we analyze the crystallographic orientations and microstructures of zircon grains and the precursor parent phases of baddeleyite crystals, from four different samples representing the entire melt-bearing stratigraphy at Mistastin: an impact glass, a vesicular clast-poor impact melt rock, a clast-rich impact melt rock, and a glass-bearing impact breccia. Using electron microprobe analysis followed by electron backscatter diffraction, we discovered that four zircon grains with vermicular coronae of baddeleyite crystals from the impact glass contain evidence for a cubic zirconia precursor, indicative of temperature conditions \u3e2370°C. We also report evidence of superheating up to 1673°C in the glass-bearing impact breccia. In addition, we also report the first occurrence at Mistastin of the high-pressure zircon polymorph reidite and former reidite in granular neoblastic (FRIGN) zircon in grains from the glass-bearing impact breccia, implying minimum peak shocks from 30–40 GPa. The identification of superheating from two localities at Mistastin demonstrates (1) that superheating is not restricted solely to rapidly cooled impact melt rock samples and is therefore more distributed across impact structures, and (2) we can investigate the P-T evolution pathways of impact melt from different impact settings, providing a clearer picture of the thermal conditions and history of the impact structure

    Interpretations of Lava Flow Properties from Radar Remote Sensing Data

    Get PDF
    The surface morphology and roughness of a lava flow provides insight on its lava properties and emplacement processes. This is essential information for understanding the eruption history of lava fields, and magmatic processes beneath the surface of Earth and other planetary bodies such as the Moon. The surface morphology is influenced by lava properties such as viscosity, temperature, composition, and rate of shear. In this work, we seek to understand how we can interpret the emplacement processes and lava properties of lava flows using remote sensing data. Craters of the Moon (COTM) National Monument and Preserve in Idaho hosts a suite of compositionally diverse lava flows with a wide range of surface roughness making it the ideal case study. Lava flows there have surface morphologies consistent with smooth pāhoehoe, slabby pāhoehoe, hummocky pāhoehoe, rubbly pāhoehoe, ‘a’ā, block-`a’ā, and blocky textures. The variation in surface roughness across the lava field reflects changes in lava properties and/or emplacement processes over space and time. We investigate geochemical and petrographic variations of the different lava flow morphologies and analyse how they relate to airborne radar data. Results show L-Band (24 cm) radar circular polarization ratios (CPR) distinguish the contrasting surface roughness at COTM, separating the smoother (primitive; low SiO2 and alkali) and rougher (evolved; high SiO2 and alkali) lava flows. However, ambiguities are present when comparing the CPR values for rubbly pāhoehoe and block-`a’ā flow. Even though their CPR values appear similar at the decimetre scale, they have distinct morphologies that formed under different emplacement processes. Without ground-truth information, the rubbly pāhoehoe and block-`a’ā lava flows could therefore be misinterpreted to be the same type of flow morphology, which would lead to false interpretations about their lava properties and emplacement processes. This is important when comparing these flows to lava flows on other planetary bodies that share similar CPR values, such as the Moon. Thus, using terrestrial analogues such as those at COTM can provide an improved understanding of the surface morphology and emplacement processes of lunar lava flows. This will lead to more refined interpretations about past volcanic processes on the Moon

    Differentiating Fissure-Fed Lava Flow Types and Facies Using RADAR and LiDAR: An Example from the 2014–2015 Holuhraun Lava Flow-field

    Get PDF
    Distinguishing between lava types and facies using remote sensing data is important for interpreting the emplacement history of lava flow-fields on Earth and other planetary bodies. Lava facies typically include a mixture of lava types and record the collective emplacement history of material preserved at a particular location. We seek to determine if lava facies in the 2014–2015 Holuhraun lava flow-field are discernible using radar roughness analysis. Furthermore, we also seek to distinguish between lava types using high resolution Light Detection and Ranging (LiDAR) data. We extracted circular polarization ratios (CPR) from the Uninhabited Aerial Vehicle Synthetic Aperture Radar and cross-polarization (VH/VV) data from the Sentinel-1 satellite to analyze the surface roughness of three previously mapped lava facies: rubbly, spiny, and undifferentiated rubbly–spiny. Using the Kruskal-Wallis test, we reveal that all but one pair of the facies are statistically separable. However, the populations overlap by 88%–89% for CPR and 64%–67% for VH/VV. Therefore, owing to large sample populations (n \u3e 2 × 105), slight differences in radar data may be used to probabilistically infer the presence of a particular facies, but not directly map them. We also calculated the root-mean-square slope and Hurst exponents of five different lava types using LiDAR topography (5 cm/pixel). Our results show minute differences between most of the lava types, with the exception of the rubbly pāhoehoe, which is discernible at 1σ. In brief, the presence of “transitional” lava types (e.g., rubbly pāhoehoe) within fissure-fed lava flow-fields complicates remote sensing-based mapping

    Initial Observations of Lunar Impact Melts and Ejecta Flows with the Mini-RF Radar

    Get PDF
    The Mini-RF radar on the Lunar Reconnaissance Orbiter's spacecraft has revealed a great variety of crater ejecta flow and impact melt deposits, some of which were not observed in prior radar imaging. The craters Tycho and Glushko have long melt flows that exhibit variations in radar backscatter and circular polarization ratio along the flow. Comparison with optical imaging reveals that these changes are caused by features commonly seen in terrestrial lava flows, such as rafted plates, pressure ridges, and ponding. Small (less than 20 km) sized craters also show a large variety of features, including melt flows and ponds. Two craters have flow features that may be ejecta flows caused by entrained debris flowing across the surface rather than by melted rock. The circular polarization ratios (CPRs) of the impact melt flows are typically very high; even ponded areas have CPR values between 0.7-1.0. This high CPR suggests that deposits that appear smooth in optical imagery may be rough at centimeter- and decimeter- scales. In some places, ponds and flows are visible with no easily discernable source crater. These melt deposits may have come from oblique impacts that are capable of ejecting melted material farther downrange. They may also be associated with older, nearby craters that no longer have a radar-bright proximal ejecta blanket. The observed morphology of the lunar crater flows has implications for similar features observed on Venus. In particular, changes in backscatter along many of the ejecta flows are probably caused by features typical of lava flows

    Social interaction, noise and antibiotic-mediated switches in the intestinal microbiota

    Get PDF
    The intestinal microbiota plays important roles in digestion and resistance against entero-pathogens. As with other ecosystems, its species composition is resilient against small disturbances but strong perturbations such as antibiotics can affect the consortium dramatically. Antibiotic cessation does not necessarily restore pre-treatment conditions and disturbed microbiota are often susceptible to pathogen invasion. Here we propose a mathematical model to explain how antibiotic-mediated switches in the microbiota composition can result from simple social interactions between antibiotic-tolerant and antibiotic-sensitive bacterial groups. We build a two-species (e.g. two functional-groups) model and identify regions of domination by antibiotic-sensitive or antibiotic-tolerant bacteria, as well as a region of multistability where domination by either group is possible. Using a new framework that we derived from statistical physics, we calculate the duration of each microbiota composition state. This is shown to depend on the balance between random fluctuations in the bacterial densities and the strength of microbial interactions. The singular value decomposition of recent metagenomic data confirms our assumption of grouping microbes as antibiotic-tolerant or antibiotic-sensitive in response to a single antibiotic. Our methodology can be extended to multiple bacterial groups and thus it provides an ecological formalism to help interpret the present surge in microbiome data.Comment: 20 pages, 5 figures accepted for publication in Plos Comp Bio. Supplementary video and information availabl
    corecore