7 research outputs found

    A Copositive Framework for Analysis of Hybrid Ising-Classical Algorithms

    Full text link
    Recent years have seen significant advances in quantum/quantum-inspired technologies capable of approximately searching for the ground state of Ising spin Hamiltonians. The promise of leveraging such technologies to accelerate the solution of difficult optimization problems has spurred an increased interest in exploring methods to integrate Ising problems as part of their solution process, with existing approaches ranging from direct transcription to hybrid quantum-classical approaches rooted in existing optimization algorithms. While it is widely acknowledged that quantum computers should augment classical computers, rather than replace them entirely, comparatively little attention has been directed toward deriving analytical characterizations of their interactions. In this paper, we present a formal analysis of hybrid algorithms in the context of solving mixed-binary quadratic programs (MBQP) via Ising solvers. We show the exactness of a convex copositive reformulation of MBQPs, allowing the resulting reformulation to inherit the straightforward analysis of convex optimization. We propose to solve this reformulation with a hybrid quantum-classical cutting-plane algorithm. Using existing complexity results for convex cutting-plane algorithms, we deduce that the classical portion of this hybrid framework is guaranteed to be polynomial time. This suggests that when applied to NP-hard problems, the complexity of the solution is shifted onto the subroutine handled by the Ising solver

    Asymptotically Faster Quantum Distributed Algorithms for Approximate Steiner Trees and Directed Minimum Spanning Trees

    Full text link
    The CONGEST and CONGEST-CLIQUE models have been carefully studied to represent situations where the communication bandwidth between processors in a network is severely limited. Messages of only O(log(n))O(log(n)) bits of information each may be sent between processors in each round. The quantum versions of these models allow the processors instead to communicate and compute with quantum bits under the same bandwidth limitations. This leads to the following natural research question: What problems can be solved more efficiently in these quantum models than in the classical ones? Building on existing work, we contribute to this question in two ways. Firstly, we present two algorithms in the Quantum CONGEST-CLIQUE model of distributed computation that succeed with high probability; one for producing an approximately optimal Steiner Tree, and one for producing an exact directed minimum spanning tree, each of which uses O~(n1/4)\tilde{O}(n^{1/4}) rounds of communication and O~(n9/4)\tilde{O}(n^{9/4}) messages, where nn is the number of nodes in the network. The algorithms thus achieve a lower asymptotic round and message complexity than any known algorithms in the classical CONGEST-CLIQUE model. At a high level, we achieve these results by combining classical algorithmic frameworks with quantum subroutines. An existing framework for using distributed version of Grover's search algorithm to accelerate triangle finding lies at the core of the asymptotic speedup. Secondly, we carefully characterize the constants and logarithmic factors involved in our algorithms as well as related algorithms, otherwise commonly obscured by O~\tilde{O} notation. The analysis shows that some improvements are needed to render both our and existing related quantum and classical algorithms practical, as their asymptotic speedups only help for very large values of nn.Comment: 23 pages, 0 figure

    QUBO.jl: A Julia Ecosystem for Quadratic Unconstrained Binary Optimization

    Full text link
    We present QUBO.jl, an end-to-end Julia package for working with QUBO (Quadratic Unconstrained Binary Optimization) instances. This tool aims to convert a broad range of JuMP problems for straightforward application in many physics and physics-inspired solution methods whose standard optimization form is equivalent to the QUBO. These methods include quantum annealing, quantum gate-circuit optimization algorithms (Quantum Optimization Alternating Ansatz, Variational Quantum Eigensolver), other hardware-accelerated platforms, such as Coherent Ising Machines and Simulated Bifurcation Machines, and more traditional methods such as simulated annealing. Besides working with reformulations, QUBO.jl allows its users to interface with the aforementioned hardware, sending QUBO models in various file formats and retrieving results for subsequent analysis. QUBO.jl was written as a JuMP / MathOptInterface (MOI) layer that automatically maps between the input and output frames, thus providing a smooth modeling experience

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Empowering Latina scientists

    No full text
    corecore