17 research outputs found

    Short-term effects of human urine fertiliser and wood ash on soil pH and electrical conductivity

    Get PDF
    The fertiliser value of human urine has been examined on several crops, yet little is known about its effects on key soil properties of agronomic significance. This study investigated temporal soil salinization potential of human urine fertiliser (HUF). It further looked at combined effects of human urine and wood ash (WA) on soil pH, urine-NH_3 volatilisation, soil electrical conductivity (EC), and basic cation contents of two Acrisols (Adenta and Toje series) from the coastal savannah zone of Ghana. The experiment was a factorial design conducted in the laboratory for 12 weeks. The results indicated an increase in soil pH by 1.2 units for Adenta series and 1 unit for Toje series after one week of HUF application followed by a decline by about 2 pH units for both soil types after twelve weeks. This was attributed to nitrification of ammonium to nitrate leading to acidification. The EC otherwise increased with HUF application creating slightly saline conditions in Toje series and non-saline conditions in Adenta series. When WA was applied with HUF, both soil pH and EC increased. In contrast, the HUF alone slightly salinized Toje series, but both soils remained non-saline whenWA and HUF were applied together. The application ofWA resulted in two-fold increase in Ca, Mg, K, and Na content compared to HUF alone. Hence, WA is a promising amendment of acid soils and could reduce the effect of soluble salts in human urine fertilizer, which is likely to cause soil salinity

    One Hundred Priority Questions for the Development of Sustainable Food Systems in Sub-Saharan Africa

    Get PDF
    Sub-Saharan Africa is facing an expected doubling of human population and tripling of food demand over the next quarter century, posing a range of severe environmental, political, and socio-economic challenges. In some cases, key Sustainable Development Goals (SDGs) are in direct conflict, raising difficult policy and funding decisions, particularly in relation to trade-offs between food production, social inequality, and ecosystem health. In this study, we used a horizon-scanning approach to identify 100 practical or research-focused questions that, if answered, would have the greatest positive impact on addressing these trade-offs and ensuring future productivity and resilience of food-production systems across sub-Saharan Africa. Through direct canvassing of opinions, we obtained 1339 questions from 331 experts based in 55 countries. We then used online voting and participatory workshops to produce a final list of 100 questions divided into 12 thematic sections spanning topics from gender inequality to technological adoption and climate change. Using data on the background of respondents, we show that perspectives and priorities can vary, but they are largely consistent across different professional and geographical contexts. We hope these questions provide a template for establishing new research directions and prioritising funding decisions in sub-Saharan Africa

    Microbial response to restoration of tantalite mine soils in western Rwanda

    No full text
    Volkswagen Foundation (Volkswagen Stiftung), Hannover, German

    Ecological and Edaphic Drivers of Yam Production in West Africa

    No full text
    Yam is an important food and cash crop in West Africa (the yam belt) whose production is traditionally nonsedentary due to its substantial nutrient demand. Population growth, urbanization, and existing soil degradation have made nonsedentary farming virtually impossible. Despite the numerous research invested in yam production within and outside the yam belt, some gaps remain to be filled owing to changing climate events and global developments. Alarmingly, the yam belt is facing sharp yield declines despite increasing production areas. The key edaphic and ecological drivers of yam production in the global yam belt were reviewed. The implications for yam production were discussed along with prospects for future research, sustainable production, and soil management. The main findings are that (1) agroecological zone, postplanting cultural practices, and climate change and variability ecological drivers, while (2) tillage, soil type, texture, and fertility were the edaphic factors. The most critical among the drivers, principally, soil fertility, entails the biological and chemical through which nutrients are released lude, and physical soil fertility which enhances low bulk density, porosity, and water retention for free yam tuber expansion. Soil fertility was the most cited driver, which explains why yam is often the first crop in the cropland cultivation cycle in the yam belt. Data show that yam yields decline with time under native fertility and mineral fertilizer application due to the voracious nutrient extraction by tubers. Conversely, yields increase chronologically under organic fertilizer application due to the additive effects of the latter on soil properties. Thus, a yam fertilizer program to develop specific yam fertilizer formulations and the adoption of the Terra Preta Model are proposed to sustain future yam production

    The Role of Soil pH in Plant Nutrition and Soil Remediation

    No full text

    Sulphur Contents in Arable Soils from Four Agro-Ecological Zones of Ghana

    No full text
    There is limited data on Sulphur (S) contents in arable soils for appropriate fertilizer recommendations in Ghana. Five study areas in a reconnaissance survey (RS), followed by an in-depth study of two areas comprising farms of different durations of cultivation, were investigated for the current total S and sulphate contents. Basic soil properties were measured using standard laboratory procedures. Total S and sulphate contents were determined using LECO instrument dry combustion and HPLC, respectively. The results showed wide variations in total S contents from 31 to 603 mg kg−1 in the Guinea Savannah (GS) zone. The mean trend was Forest > Forest-Transition (F-S) > north Guinea Savannah (nGS) > Deciduous Forest (DF) > south Guinea Savannah (sGS) in the RS sites, with a similar trend in the main study sites. Sulphate contents ranged from 5 to 25 mg kg−1, constituting 0.8 to 37% of the total S. The mean percent trend was sGS = DF > Forest > nGS > F-S. Soil organic carbon (SOC) was the major predictor of total S along with pedogenic minerals. Total S and crystalline pedogenic minerals predicted the sulphate contents. The results highlight the need for ecologically-based S fertilizer programmes to boost crop yields

    Duration of Cultivation Has Varied Impacts on Soil Charge Properties in Different Agro-Ecological Zones of Ghana

    No full text
    Agricultural expansion into natural habitats causes soil fertility decline after a period of cultivation. This study investigated changes in soil exchange properties in different farm types at Dompem and Adansam in the Forest and Forest–Savannah transition zones of Ghana as influenced by the duration of cultivation. Sixty farms were selected for soil sampling through a reconnaissance survey. The soils were subjected to physicochemical analysis. The results showed that the Dompem soils were loamic, had more amorphous Fe and Al oxides, were strongly acidic and had low contents of exchangeable acidity, a low sum of exchangeable bases (SEB), low effective cation exchangeable capacities (ECECs) and low available P. Conversely, the Adansam soils were arenic, slightly acidic and had relatively higher SEBs and ECECs. Interestingly, soil organic carbon (SOC) in the Dompem soils declined by >10% in relation to the duration of cultivation and showed rapid reductions within three years. Correspondingly, soil bulk density, CEC and SEB declined. In Adansam soils, only δpH declined in relation to the duration of cultivation. Soil organic carbon accounted for >50% of the ECEC and 49% of the SEB in Dompem soils but 36% of δpH in the Adansam soils. In conclusion, agricultural expansion, manifested in the duration of cultivation, mainly influenced soil charge properties through SOC decline
    corecore