6 research outputs found

    VECTOS: An Integrated System for Monitoring Risk Factors Associated With Urban Arbovirus Transmission.

    Get PDF
    In Colombia, as in many Latin American countries, decision making and development of effective strategies for vector control of urban diseases such as dengue, Zika, and chikungunya is challenging for local health authorities. The heterogeneity of transmission in urban areas requires an efficient risk-based allocation of resources to control measures. With the objective of strengthening the capacity of local surveillance systems to identify variables that favor urban arboviral transmission, a multidisciplinary research team collaborated with the local Secretary of Health officials of 3 municipalities in Colombia (Giron, Yopal, and Buga), in the design of an integrated information system called VECTOS from 2015 to 2018. Information and communication technologies were used to develop 2 mobile applications to capture entomological and social information, as well as a web-based system for the collection, geo-referencing, and integrated information analysis using free geospatial software. This system facilitates the capture and analysis of epidemiological information from the Colombian national surveillance system (SIVIGILA), periodic entomological surveys-mosquito larvae and pupae in premises and peridomestic breeding sites-and surveys of knowledge, attitudes, and practices (KAP) in a spatial and temporal context at the neighborhood level. The data collected in VECTOS are mapped and visualized in graphical reports. The system enables real-time monitoring of weekly epidemiological indicators, entomological indices, and social surveys. Additionally, the system enables risk stratification of neighborhoods, using selected epidemiological, entomological, demographic, and environmental variables. This article describes the VECTOS system and the lessons learned during its development and use. The joint analysis of epidemiological and entomological data within a geographic information system in VECTOS gives better insight to the routinely collected data and identifies the heterogeneity of risk factors between neighborhoods. We expect the system to continue to strengthen vector control programs in evidence-based decision making and in the design and enhanced follow-up of vector control strategies

    Alternative Polyadenylation and Salicylic Acid Modulate Root Responses to Low Nitrogen Availability

    Get PDF
    16 Pág.Nitrogen (N) is probably the most important macronutrient and its scarcity limits plant growth, development and fitness. N starvation response has been largely studied by transcriptomic analyses, but little is known about the role of alternative polyadenylation (APA) in such response. In this work, we show that N starvation modifies poly(A) usage in a large number of transcripts, some of them mediated by FIP1, a component of the polyadenylation machinery. Interestingly, the number of mRNAs isoforms with poly(A) tags located in protein-coding regions or 5'-UTRs significantly increases in response to N starvation. The set of genes affected by APA in response to N deficiency is enriched in N-metabolism, oxidation-reduction processes, response to stresses, and hormone responses, among others. A hormone profile analysis shows that the levels of salicylic acid (SA), a phytohormone that reduces nitrate accumulation and root growth, increase significantly upon N starvation. Meta-analyses of APA-affected and fip1-2-deregulated genes indicate a connection between the nitrogen starvation response and salicylic acid (SA) signaling. Genetic analyses show that SA may be important for preventing the overgrowth of the root system in low N environments. This work provides new insights on how plants interconnect different pathways, such as defense-related hormonal signaling and the regulation of genomic information by APA, to fine-tune the response to low N availability.Research was supported by grants from the Spanish Government BIO2017-82209-R, and BIO2014-52091-R to J.C.P. and by the “Severo Ochoa Program for Centres of Excellence in R&D” from the Agencia Estatal de Investigación of Spain (grant SEV-2016-0672 (2017-2021) to the CBGP. CMC by a predoctoral fellowship (BES-2017-082152) associated to the Severo Ochoa Program. AS was supported by a Torres Quevedo grant (PTQ-15-07915) from MINECO (Spain).Peer reviewe

    Comparison of the efficacy of long-lasting insecticidal nets PermaNet® 2.0 and Olyset® against Anopheles albimanus under laboratory conditions

    Full text link
    Insecticide-treated nets provide a reduction in human-vector contact through physical barrier, mortality and/or repellent effects that protect both users and non-users, thereby protecting the wider community from vector-borne diseases like malaria. Long-lasting insecticide-treated nets (LLINs) are the best alternative. This study evaluated the bioefficacy of LLINs PermaNet® 2.0 and Olyset® under laboratory conditions with Anopheles albimanus. The laboratory strain was evaluated for insecticide susceptibility with selected insecticides used for malarial control. Regeneration time and wash resistance were evaluated with the standard bioassay cone technique following WHO guidelines. Heat assistance was used for Olyset® nets; the nets were exposed to four different temperatures to speed the regeneration process. The regeneration study of PermaNet® 2.0 showed that efficacy was fully recovered by 24 h after one and three washes and wash resistance persisted for 15 washes. Regeneration of Olyset® nets was not observed for nets washed three times, even with the different temperature exposures for up to seven days. Thus, for Olyset® the wash resistance evaluation could not proceed. Differences in response between the two LLINs may be associated with differences in manufacturing procedures and species response to the evaluated LLINs. PermaNet® 2.0 showed higher and continuous efficacy against An. albimanus

    Comparison of the efficacy of long-lasting insecticidal nets PermaNet® 2.0 and Olyset® against Anopheles albimanus under laboratory conditions

    No full text
    Insecticide-treated nets provide a reduction in human-vector contact through physical barrier, mortality and/or repellent effects that protect both users and non-users, thereby protecting the wider community from vector-borne diseases like malaria. Long-lasting insecticide-treated nets (LLINs) are the best alternative. This study evaluated the bioefficacy of LLINs PermaNet® 2.0 and Olyset® under laboratory conditions with Anopheles albimanus. The laboratory strain was evaluated for insecticide susceptibility with selected insecticides used for malarial control. Regeneration time and wash resistance were evaluated with the standard bioassay cone technique following WHO guidelines. Heat assistance was used for Olyset® nets; the nets were exposed to four different temperatures to speed the regeneration process. The regeneration study of PermaNet® 2.0 showed that efficacy was fully recovered by 24 h after one and three washes and wash resistance persisted for 15 washes. Regeneration of Olyset® nets was not observed for nets washed three times, even with the different temperature exposures for up to seven days. Thus, for Olyset® the wash resistance evaluation could not proceed. Differences in response between the two LLINs may be associated with differences in manufacturing procedures and species response to the evaluated LLINs. PermaNet® 2.0 showed higher and continuous efficacy against An. albimanus

    A light-sensitive mutation in Arabidopsis LEW3 reveals the important role of N-glycosylation in root growth and development

    No full text
    Plant roots have the potential capacity to grow almost indefinitely if meristematic and lateral branching is sustained. In a genetic screen we identified an Arabidopsis mutant showing limited root growth (lrg1) due to defects in cell division and elongation in the root meristem. Positional cloning determined that lrg1 affects an alpha-1,2-mannosyltransferase gene, LEW3, involved in protein N-glycosylation. The lrg1 mutation causes a synonymous substitution that alters the correct splicing of the fourth intron in LEW3, causing a mix of wild-type and truncated protein. LRG1 RNA missplicing in roots and short root phenotypes in lrg1 are light-intensity dependent. This mutation disrupts a GC-base pair in a three-base-pair stem with a four-nucleotide loop, which seems to be necessary for correct LEW3 RNA splicing. We found that the lrg1 short root phenotype correlates with high levels of reactive oxygen species and low pH in the apoplast. Proteomic analyses of N-glycosylated proteins identified GLU23/PYK10 and PRX34 as N-glycosylation targets of LRG1 activity. The lrg1 mutation reduces the positive interaction between Arabidopsis and Serendipita indica. A prx34 mutant showed a significant reduction in root growth, which is additive to lrg1. Taken together our work highlights the important role of N-glycosylation in root growth and development. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email [email protected]
    corecore