5 research outputs found

    Additional file 2: of An optimised method for the proteomic profiling of full thickness human skin

    No full text
    Table detailing the proteins identified in the final method (Fig. 2). (XLSX 120 kb

    Additional file 1: of An optimised method for the proteomic profiling of full thickness human skin

    No full text
    Table detailing the proteins identifed in the original method (Fig. 1). (XLSX 19 kb

    Figure 1

    No full text
    <p><b>A.</b> Mutant read frequency in different samples. The patient's blood samples were all taken around the time of neuroblastoma diagnosis. Numbers of sequencing reads per sample are displayed in the top level. * p = 0.01, comparing mutant read count frequencies between samples PD9058b3 and PD9058b with Fisher's exact test. Differences between PD9058b2 and sample b/b3 are not significant (p>0.05). <b>B.</b> Capillary sequencing of control germline DNA (Reference sequence) and patient's blood samples extracted at three time points, showing very low level of adenine (black arrow). The guanine (black peak) dropped approximately between 8–17% relative to control, as given by the software, which would not usually be classed as significant when looking for heterozygous germline mutations. <b>C and D.</b> Immunohistochemistry to show strong nuclear staining p53 in neuroblastoma (C) and sarcoma NOS (D).</p

    Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort

    No full text
    Individuals with rare kidney diseases account for 5-10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure.People aged 0-96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan-Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1·73 m2 or more to first eGFR of less than 30 mL/min per 1·73 m2 (the therapeutic trial window).Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9·6 years (IQR 5·9-16·7). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2·81 million UK patients with all-cause chronic kidney disease (28% vs 1%; p Background Methods Findings Interpretation Funding</p
    corecore