1,419 research outputs found

    Principles of practice in mental health assessment with Aboriginal Australians

    Get PDF
    In this chapter, concepts and history of assessment and testing in the context of Aboriginal and Torres Strait Islander social and emotional wellbeing and mental health are discussed. Importantly, recently revised diagnostic guidelines and the National Practice Standards for the Mental Health Workforce 20131 and their appropriateness for meeting the distinctive needs of Aboriginal people are reviewed. Various assessment tools and measures that have been validated or proved appropriate for use with particular Aboriginal populations, i.e. youth, women and older people, are described. We conclude that practitioners need to be critically reflective in their role in assessment, and position themselves to play an important transformative role in conducting assessment. This extends to acknowledging and enacting culturally responsive principles, procedures and practices to ensure that Aboriginal people have access to effective, culturally secure mental health care

    The Epitheliome: agent-based modelling of the social behaviour of cells

    Get PDF
    We have developed a new computational modelling paradigm for predicting the emergent behaviour resulting from the interaction of cells in epithelial tissue. As proof-of-concept, an agent-based model, in which there is a one-to-one correspondence between biological cells and software agents, has been coupled to a simple physical model. Behaviour of the computational model is compared with the growth characteristics of epithelial cells in monolayer culture, using growth media with low and physiological calcium concentrations. Results show a qualitative fit between the growth characteristics produced by the simulation and the in vitro cell models

    Little genomic support for Cyclophilin A-matrix metalloproteinase-9 pathway as a therapeutic target for cognitive impairment in APOE4 carriers

    Get PDF
    Therapeutic targets for halting the progression of Alzheimer’s disease pathology are lacking. Recent evidence suggests that APOE4, but not APOE3, activates the Cyclophilin-A matrix metalloproteinase-9 (CypA-MMP9) pathway, leading to an accelerated breakdown of the blood–brain barrier (BBB) and thereby causing neuronal and synaptic dysfunction. Furthermore, blockade of the CypA-MMP9 pathway in APOE4 knock-in mice restores BBB integrity and subsequently normalizes neuronal and synaptic function. Thus, CypA has been suggested as a potential target for treating APOE4 mediated neurovascular injury and the resulting neuronal dysfunction and degeneration. The odds of drug targets passing through clinical trials are greatly increased if they are supported by genomic evidence. We found little evidence to suggest that CypA or MMP9 affects the risk of Alzheimer’s disease or cognitive impairment using two-sample Mendelian randomization and polygenic risk score analysis in humans. This casts doubt on whether they are likely to represent effective drug targets for cognitive impairment in human APOE4 carriers

    Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond

    Full text link
    The optical transition linewidth and emission polarization of single nitrogen-vacancy (NV) centers are measured from 5 K to room temperature. Inter-excited state population relaxation is shown to broaden the zero-phonon line and both the relaxation and linewidth are found to follow a T^5 dependence for T up to 100 K. This dependence indicates that the dynamic Jahn-Teller effect is the dominant dephasing mechanism for the NV optical transitions at low temperatures

    Lens-regulated retinoic acid signalling controls expansion of the developing eye

    Get PDF
    This research was funded by a Biotechnology and Biological Science Research Council (BBSRC) PhD studentship to H.M.W., a University of Aberdeen Institute of Medical Sciences PhD Studentship to J.N.S., and a grant from the University of Aberdeen Development Trust [OL 989 to L.E., J.M.C].Peer reviewedPublisher PD

    Covalent attachment of fibronectin onto emulsion‐templated porous polymer scaffolds enhances human endometrial stromal cell adhesion, infiltration, and function

    Get PDF
    A novel strategy for the surface functionalization of emulsion‐templated highly porous (polyHIPE) materials as well as its application to in vitro 3D cell culture is presented. A heterobifunctional linker that consists of an amine‐reactive N‐hydroxysuccinimide ester and a photoactivatable nitrophenyl azide, N‐sulfosuccinimidyl‐6‐(4â€Č‐azido‐2â€Č‐nitrophenylamino)hexanoate (sulfo‐SANPAH), is utilized to functionalize polyHIPE surfaces. The ability to conjugate a range of compounds (6‐aminofluorescein, heptafluorobutylamine, poly(ethylene glycol) bis‐amine, and fibronectin) to the polyHIPE surface is demonstrated using fluorescence imaging, FTIR spectroscopy, and X‐ray photoelectron spectroscopy. Compared to other existing surface functionalization methods for polyHIPE materials, this approach is facile, efficient, versatile, and benign. It can also be used to attach biomolecules to polyHIPE surfaces including cell adhesion‐promoting extracellular matrix proteins. Cell culture experiments demonstrated that the fibronectin‐conjugated polyHIPE scaffolds improve the adhesion and function of primary human endometrial stromal cells. It is believed that this approach can be employed to produce the next generation of polyHIPE scaffolds with tailored surface functionality, enhancing their application in 3D cell culture and tissue engineering whilst broadening the scope of applications to a wider range of cell types

    Shared mechanism of teratogenicity of anti-angiogenic drugs identified in the chicken embryo model

    Get PDF
    Acknowledgements The authors would like to thank Maria Kisakyamaria and Scott McMenemy for preliminary experimental data. This work was supported by a Wellcome Trust-NIH PhD Studentship awarded to SB, WDF and NV (Grant number 098252/Z/12/Z). This research was supported in part by the Intramural Research Program of the National Institutes of Health, National Cancer Institute. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organization imply endorsement by the U.S. Government.Peer reviewedPublisher PD

    Late Holocene Sedimentation and Paleoenvironmental History for the Tidal Marshes of the Potomac and Rappahannock Rivers, Tributaries to Chesapeake Bay

    Get PDF
    Instrumental tide gauge records indicate that the modern rates of sea-level rise in the Chesapeake Bay more than double the global average of 1.2-1.5 mm yr-1. The primary objective for this study is to establish a relative depositional history for the tidal marshes of the Potomac and Rappahannock Rivers that will help us improve our understanding of processes that influence sedimentation in the proximal tributaries of Chesapeake Bay. Marsh cores were collected from Blandfield Point VA, Tappahannock VA, and Potomac Creek VA. The sedimentary facies include: 1) a lower unit of organic-poor, grey clay with fine sand and silt layers and estuarine foraminifera; and 2) an upper unit of organic-rich clay and peat with abundant brackish to freshwater marsh foraminifera and thecamoebians. AMS 14C dating of bulk marsh sediments yield sedimentation rates at Potomac Creek ranging from 3.04-4.20 mm yr-1 for the past 2500 years. Rates of sedimentation calculated for Blandfield Point indicate 1.37-2.19 mm yr-1 in the basal clays and peat for the past ~3000 years. Foraminiferal census counts indicate a freshening upward trend with a transition from an estuarine Ammobaculites crassus assemblage to a marsh Ammoastuta salsa assemblage with abundant freshwater thecamoebians. The late Holocene history of sedimentation for the marshes indicates that differential compaction, recent land use practices, and climate change have contributed to the resultant freshening-upward environmental trend and variability in sediment accumulation rates between coring sites

    Evidence for variation in the effective population size of animal mitochondrial DNA

    Get PDF
    Background: It has recently been shown that levels of diversity in mitochondrial DNA are remarkably constant across animals of diverse census population sizes and ecologies, which has led to the suggestion that the effective population of mitochondrial DNA may be relatively constant. Results: Here we present several lines of evidence that suggest, to the contrary, that the effective population size of mtDNA does vary, and that the variation can be substantial. First, we show that levels of mitochondrial and nuclear diversity are correlated within all groups of animals we surveyed. Second, we show that the effectiveness of selection on non-synonymous mutations, as measured by the ratio of the numbers of non-synonymous and synonymous polymorphisms, is negatively correlated to levels of mitochondrial diversity. Finally, we estimate the effective population size of mitochondrial DNA in selected mammalian groups and show that it varies by at least an order of magnitude. Conclusions: We conclude that there is variation in the effective population size of mitochondria. Furthermore we suggest that the relative constancy of DNA diversity may be due to a negative correlation between the effective population size and the mutation rate per generation
    • 

    corecore