57 research outputs found
Cancer Patient T Cells Genetically Targeted to Prostate-Specific Membrane Antigen Specifically Lyse Prostate Cancer Cells and Release Cytokines in Response to Prostate-Specific Membrane Antigen
AbstractThe expression of immunoglobulin-based artificial receptors in normal T lymphocytes provides a means to target lymphocytes to cell surface antigens independently of major histocompatibility complex restriction. Such artificial receptors have been previously shown to confer antigen-specific tumoricidal properties in murine T cells. We constructed a novel ζ chain fusion receptor specific for prostate-specific membrane antigen (PSMA) termed Pz-1. PSMA is a cell-surface glycoprotein expressed on prostate cancer cells and the neovascular endothelium of multiple carcinomas. We show that primary T cells harvested from five of five patients with different stages of prostate cancer and transduced with the Pz-1 receptor readily lyse prostate cancer cells. Having established a culture system using fibroblasts that express PSMA, we next show that T cells expressing the Pz-1 receptor release cytokines in response to cell-bound PSMA. Furthermore, we show that the cytokine release is greatly augmented by B7.1-mediated costimulation. Thus, our findings support the feasibility of adoptive cell therapy by using genetically engineered T cells in prostate cancer patients and suggest that both CD4+ and CD8+ T lymphocyte functions can be synergistically targeted against tumor cells
The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma.
Prostate cancer is the most commonly diagnosed malignancy and second leading cause of cancer death among men in the United States. In recent years, several new agents, including cancer immunotherapies, have been approved or are currently being investigated in late-stage clinical trials for the management of advanced prostate cancer. Therefore, the Society for Immunotherapy of Cancer (SITC) convened a multidisciplinary panel, including physicians, nurses, and patient advocates, to develop consensus recommendations for the clinical application of immunotherapy for prostate cancer patients. To do so, a systematic literature search was performed to identify high-impact papers from 2006 until 2014 and was further supplemented with literature provided by the panel. Results from the consensus panel voting and discussion as well as the literature review were used to rate supporting evidence and generate recommendations for the use of immunotherapy in prostate cancer patients. Sipuleucel-T, an autologous dendritic cell vaccine, is the first and currently only immunotherapeutic agent approved for the clinical management of metastatic castrate resistant prostate cancer (mCRPC). The consensus panel utilized this model to discuss immunotherapy in the treatment of prostate cancer, issues related to patient selection, monitoring of patients during and post treatment, and sequence/combination with other anti-cancer treatments. Potential immunotherapies emerging from late-stage clinical trials are also discussed. As immunotherapy evolves as a therapeutic option for the treatment of prostate cancer, these recommendations will be updated accordingly
Phase 1/2 multiple ascending dose trial of the prostate-specific membrane antigen-targeted antibody drug conjugate MLN2704 in metastatic castration-resistant prostate cancer
This phase 1/2 study evaluated the dose-limiting toxicity and maximum tolerated dose of MLN2704, a humanized monoclonal antibody MLN591 targeting prostate-specific membrane antigen, linked to the maytansinoid DM1 in patients with progressive metastatic castration-resistant prostate cancer
Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles
Aim: Two unexplored aspects for irinotecan and cisplatin (I&C) combination chemotherapy are: actively targeting both drugs to a specific diseased cell type, and delivering both drugs on the same vehicle to ensure their synchronized entry into the cell at a well-defined ratio. In this work, the authors report the use of targeted polymeric nanoparticles (NPs) to coencapsulate and deliver I&C to cancer cells expressing the prostate-specific membrane antigen. Materials & methods: Targeted NPs were prepared in a single step by mixing four different precursors inside microfluidic devices. Results: I&C were encapsulated in 55-nm NPs and showed an eightfold increase in internalization by prostate-specific membrane antigen-expressing LNCaP cells compared with nontargeted NPs. NPs coencapsulating both drugs exhibited strong synergism in LNCaP cells with a combination index of 0.2. Conclusion: The strategy of coencapsulating both I&C in a single NP targeted to a specific cell type could potentially be used to treat different types of cancer.Prostate Cancer Foundation (Nanotherapeutics Award)MIT-Harvard Center of Cancer Nanotechnology Excellence (U54-CA151884)National Science Foundation (U.S.). Graduate Research Fellowship ProgramAmerican Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi
Recommended from our members
Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles
Aim: Two unexplored aspects for irinotecan and cisplatin (I&C) combination chemotherapy are (1) actively targeting both drugs to a specific diseased cell type and (2) delivering both drugs on the same vehicle to ensure their synchronized entry into the cell at a well-defined ratio. In this work we report the use of targeted polymeric nanoparticles (NPs) to co-encapsulate and deliver I&C to cancer cells expressing the Prostate Specific Membrane Antigen (PSMA).
Method: We prepared targeted NPs in a single-step by mixing four different precursors inside microfluidic devices.
Results: I&C were encapsulated in 55-nm NPs and showed an 8-fold increase in internalization by PSMA-expressing LNCaP cells compared to non-targeted NPs. NPs co-encapsulating both drugs exhibited strong synergism in LNCaP cells with a combination index of 0.2.
Conclusion: The strategy of co-encapsulating both irinotecan and cisplatin in a single NP targeted to a specific cell type could potentially be used to treat different types of cancer
Recommended from our members
ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation
Aim: The development of chemoradiation – the concurrent administration of chemotherapy and radiotherapy – has led to significant improvements in local tumor control and survival. However, it is limited by its high toxicity. In this study, we report the development of a novel NP (nanoparticle) therapeutic, ChemoRad NP, which can deliver biologically targeted chemoradiation.
Method: A biodegradable and biocompatible lipid–polymer hybrid NP that is capable of delivering both chemotherapy and radiotherapy was formulated.
Results: Using docetaxel, indium111 and yttrium90 as model drugs, we demonstrated that the ChemoRad NP can encapsulate chemotherapeutics (up to 9% of NP weight) and radiotherapeutics (100 mCi of radioisotope per gram of NP) efficiently and deliver both effectively. Using prostate cancer as a disease model, we demonstrated the targeted delivery of ChemoRad NPs and the higher therapeutic efficacy of ChemoRad NPs.
Conclusion: We believe that the ChemoRad NP represents a new class of therapeutics that holds great potential to improve cancer treatment
Phase II Study of Lutetium-177-Labeled Anti-Prostate-Specific Membrane Antigen Monoclonal Antibody J591 for Metastatic Castration-Resistant Prostate Cancer
To assess the efficacy of a single infusion of radiolabeled anti-prostate specific membrane antigen monoclonal antibody J591 (177Lu-J591) by PSA decline, measurable disease response, and survival
The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer
The androgen receptor (AR) plays a central role in establishing an oncogenic cascade that drives prostate cancer progression. Some prostate cancers escape androgen dependence and are often associated with an aggressive phenotype. The oestrogen receptor alpha (ERα) is expressed in prostate cancers, independent of AR status. However, the role of ERα remains elusive. Using a combination of chromatin immunoprecipitation (ChIP) and RNA-sequencing data, we identified an ERα-specific non-coding transcriptome signature. Among putatively ERα-regulated intergenic long non-coding RNAs (lncRNAs), we identified nuclear enriched abundant transcript 1 (NEAT1) as the most significantly overexpressed lncRNA in prostate cancer. Analysis of two large clinical cohorts also revealed that NEAT1 expression is associated with prostate cancer progression. Prostate cancer cells expressing high levels of NEAT1 were recalcitrant to androgen or AR antagonists. Finally, we provide evidence that NEAT1 drives oncogenic growth by altering the epigenetic landscape of target gene promoters to favour transcription
Recommended from our members
Superparamagnetic Iron Oxide Nanoparticle-Aptamer Bioconjugates for Combined Prostate Cancer Imaging and Therapy
- …