401 research outputs found
Shadow Energy Functionals and Potentials in Born-Oppenheimer Molecular Dynamics
In Born-Oppenheimer molecular dynamics (BOMD) simulations based on density
functional theory (DFT), the potential energy and the interatomic forces are
calculated from an electronic ground state density that is determined by an
iterative self-consistent field optimization procedure, which in practice never
is fully converged. The calculated energies and the forces are therefore only
approximate, which may lead to an unphysical energy drift and instabilities.
Here we discuss an alternative shadow BOMD approach that is based on a backward
error analysis. Instead of calculating approximate solutions for an underlying
exact regular BO potential, we do the opposite. Instead, we calculate the exact
electron density, energies, and forces, but for an underlying approximate
shadow BO potential. In this way the calculated forces are conservative with
respect to the shadow potential and generate accurate molecular trajectories
with long-term energy stability. We show how such shadow BO potentials can be
constructed at different levels of accuracy as a function of the integration
time step, dt, from the minimization of a sequence of systematically
improvable, but approximate, shadow energy density functionals. For each
functional there is a corresponding ground state BO potential. These pairs of
shadow energy functionals and potentials are higher-level generalizations of
the original "0th-level" shadow energy functionals and potentials used in
extended Lagrangian BOMD [Eur. Phys. J. B vol. 94, 164 (2021)]. The proposed
shadow energy functionals and potentials are useful only within this dynamical
framework, where also the electronic degrees of freedom are propagated together
with the atomic positions and velocities. The theory is general and can be
applied to MD simulations using approximate DFT, Hartree-Fock or semi-empirical
methods, as well as to coarse-grained flexible charge models.Comment: 16 pages, 3 figure
Eigenvector Centrality Distribution for Characterization of Protein Allosteric Pathways
Determining the principal energy pathways for allosteric communication in
biomolecules, that occur as a result of thermal motion, remains challenging due
to the intrinsic complexity of the systems involved. Graph theory provides an
approach for making sense of such complexity, where allosteric proteins can be
represented as networks of amino acids. In this work, we establish the
eigenvector centrality metric in terms of the mutual information, as a mean of
elucidating the allosteric mechanism that regulates the enzymatic activity of
proteins. Moreover, we propose a strategy to characterize the range of the
physical interactions that underlie the allosteric process. In particular, the
well known enzyme, imidazol glycerol phosphate synthase (IGPS), is utilized to
test the proposed methodology. The eigenvector centrality measurement
successfully describes the allosteric pathways of IGPS, and allows to pinpoint
key amino acids in terms of their relevance in the momentum transfer process.
The resulting insight can be utilized for refining the control of IGPS
activity, widening the scope for its engineering. Furthermore, we propose a new
centrality metric quantifying the relevance of the surroundings of each
residue. In addition, the proposed technique is validated against experimental
solution NMR measurements yielding fully consistent results. Overall, the
methodologies proposed in the present work constitute a powerful and cost
effective strategy to gain insight on the allosteric mechanism of proteins
Matrix Diagonalization as a Board Game: Teaching an Eigensolver the Fastest Path to Solution
Matrix diagonalization is at the cornerstone of numerous fields of scientific
computing. Diagonalizing a matrix to solve an eigenvalue problem requires a
sequential path of iterations that eventually reaches a sufficiently converged
and accurate solution for all the eigenvalues and eigenvectors. This typically
translates into a high computational cost. Here we demonstrate how
reinforcement learning, using the AlphaZero framework, can accelerate Jacobi
matrix diagonalizations by viewing the selection of the fastest path to
solution as a board game. To demonstrate the viability of our approach we apply
the Jacobi diagonalization algorithm to symmetric Hamiltonian matrices that
appear in quantum chemistry calculations. We find that a significant
acceleration can often be achieved. Our findings highlight the opportunity to
use machine learning as a promising tool to improve the performance of
numerical linear algebra.Comment: 14 page
A Reappraisal of Lymphadenectomy in Common Gynecological Cancers
Objectives: Lymph node dissection (LND) in gynecological malignancies has always been a cornerstone in the diagnosis of metastasis, it is also considered an important prognostic factor, and a reliable guide to management strategies. However, its incidence of complications, namely lymphedema, vascular injuries and other lesions, has led to a reconsideration of its efficacy and a comparison of the role of systematic vs. sentinel lymph node (SLN) dissection. Mechanism: Review of the literature using keywords such as âlymph nodesâ, âsentinel lymph nodesâ, âmorbidity and mortalityâ, âgynecological cancersâ, âendometrial cancerâ, âovarian cancerâ, and âcervical cancerâ. Findings in Brief: In the case of endometrial cancer, several studies have investigated the efficacy of SLN compared with systematic LND. Most of the results demonstrated the efficacy of SLN dissection in endometrial cancer, with the added benefit of lower morbidity. In patients with ovarian cancer, the mainstay of treatment is debulking with optimal cytoreductive surgery. Recent studies have compared systematic lymphadenectomy to non-lymphadenectomy, with an additional advantage in the cases of lymphadenectomy. However, since its publication, the lymphadenectomy in ovarian cancers (LIONS) trial, has revolutionized the standard of care for patients with advanced ovarian cancer and has called into question the increased morbidity and mortality in systematic lymphadenectomy. In cervical cancers, lymph node status is considered to be the most important prognostic factor. In this case, limiting lymphadenectomy to the borders of the inferior mesenteric artery seems promising, and studies are currently being carried out to investigate the feasibility of SLN dissection instead of systematic lymph node dissection. Conclusions: SLN dissection is associated with lower morbidity and mortality, and has been shown to be superior to systematic lymphadenectomy in several studies. However, more research and specific guidelines are needed to better select either one or the other method in the management of gynecological cancers. Copyright: © 2023 The Author(s)
Genetic characterization of Carnivore Parvoviruses in Spanish wildlife reveals domestic dog and cat-related sequences
The impact of carnivore parvovirus infection on wild populations is not yet understood; disease signs are mainly developed in pups and assessing the health of litters in wild carnivores has big limitations. This study aims to shed light on the virus dynamics among wild carnivores thanks to the analysis of 213 samples collected between 1994 and 2013 in wild ecosystems from Spain. We determined the presence of carnivore parvovirus DNA by realâtime PCR and sequenced the vp2 gen from 22 positive samples to characterize the strains and to perform phylogenetic analysis. The presence of carnivore parvovirus DNA was confirmed in 18% of the samples, with a higher prevalence detected in wolves (Canis lupus signatus, 70%). Fourteen sequences belonging to nine wolves, three Eurasian badgers (Meles meles), a common genet (Genetta genetta) and a European wildcat (Felis silvestris) were classified as canine parvovirus 2c (CPVâ2c); five sequences from three wolves, a red fox (Vulpes vulpes) and a stone marten (Martes foina) as CPVâ2b; and three sequences from a badger, a genet and a stone marten as feline parvovirus (FPV). This was the first report of a wildcat infected with a canine strain. Sequences described in this study were identical or very close related to others previously found in domestic carnivores from distant countries, suggesting that crossâspecies transmission takes place and that the parvovirus epidemiology in Spain, as elsewhere, could be influenced by global factors
- âŠ