6 research outputs found

    Photoexcitation dynamics in perylene diimide dimers

    Get PDF
    We utilize first-principles theory to investigate photo-induced excited-state dynamics of functionalized perylene diimide. This class of materials is highly suitable for solar energy conversion because of the strong optical absorbance, efficient energy transfer, and chemical tunability. We couple time-dependent density functional theory to a recently developed time-resolved non-adiabatic dynamics approach based on a semi-empirical description. By studying the monomer and dimer, we focus on the role stacking plays on the time-scales associated with excited-state non-radiative relaxation from a high excitonic state to the lowest energy exciton. We predict that the time-scale for energy conversion in the dimer is significantly faster than that in the monomer when equivalent excited states are accounted for. Additionally, for the dimer, the decay from the second to the nearly degenerate lowest energy excited-state involves two time-scales: a rapid decay on the order of ∼10 fs followed by a slower decay of ∼100 fs. Analysis of the spatial localization of the electronic transition density during the internal conversion process points out the existence of localized states on individual monomers, indicating that the strength of thermal fluctuations exceeds electronic couplings between the states such that the exciton hops between localized states throughout the simulation.Fil: Mukazhanova, Aliya. Boston University; Estados UnidosFil: Malone, Walter. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Negrín Yuvero, Lázaro Hassiel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tretiak, Sergei. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Sharifzadeh, Sahar. Boston University; Estados Unido

    Effects of trapping site on the spectroscopy of 1P1 excited group 12 metal atoms in rare gas matrices

    Get PDF
    A molecular dynamics deposition model has been used to simulate the growth of rare gas matrices doped with atoms of the group 12 elements zinc, cadmium and mercury. This study investigates the sites occupied by Zn, Cd and Hg metal atoms when isolated in the solid rare gases. To probe the results, the resonance 1 P 1-1 S 0 transitions of the matrix-isolated metal atoms were calculated and compared with the recorded spectra of the M/RG solids. The theoretical spectroscopy obtained in this work was generated using the molecular dynamics with quantum transitions method. In Ne matrices the metal atoms preferably occupy tetra- and hexa-vacancy sites while in the case of Xe matrices, only the single vacancy site is formed. For Ar and Kr matrices Zn but especially Cd can be trapped in tetra- and hexa-vacancy sites in addition to single-vacancy sites, while Hg atoms show exclusive occupancy in single vacancy sites.Fil: Lara Moreno, M.. Universidad de La Habana; Cuba. Instituto Superior de Tecnologías y Ciencias Aplicadas.; Cuba. Université de Bordeaux; Francia. Centre National de la Recherche Scientifique; FranciaFil: Alvarez Hernández, J.. Universidad de La Habana; Cuba. Instituto Superior de Tecnologías y Ciencias Aplicadas.; Cuba. University of Rochester. Department of Chemistry; Estados UnidosFil: Negrín Yuvero, Lázaro Hassiel. Universidad de La Habana; Cuba. Instituto Superior de Tecnologías y Ciencias Aplicadas.; Cuba. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: McCaffrey, J. G.. National University of Ireland. Maynooth University. Department of Chemistry; IrlandaFil: Rojas Lorenzo, G.. Universidad de La Habana; Cuba. Instituto Superior de Tecnologías y Ciencias Aplicadas.; Cub

    Vibronic Photoexcitation Dynamics of Perylene Diimide: Computational Insights

    No full text
    Perylene diimide (PDI) represents a prototype material for organic optoelectronic devices because of its strong optical absorbance, chemical stability, efficient energy transfer, and optical and chemical tunability. Herein, we analyze in detail the vibronic relaxation of its photoexcitation using nonadiabatic excited-state molecular dynamics simulations. We find that after the absorption of a photon, which excites the electron to the second excited state, S2, induced vibronic dynamics features persistent modulations in the spatial localization of electronic and vibrational excitations. These energy exchanges are dictated by strong vibronic couplings that overcome structural disorders and thermal fluctuations. Specifically, the electronic wavefunction periodically swaps between localizations on the right and left sides of the molecule. Within 1 ps of such dynamics, a nonradiative transition to the lowest electronic state, S1, takes place, resulting in a complete delocalization of the wavefunction. The observed vibronic dynamics emerges following the electronic energy deposition in the direction that excites a combination of two dominant vibrational normal modes. This behavior is maintained even with a chemical substitution that breaks the symmetry of the molecule. We believe that our findings elucidate the nature of the complex dynamics of the optically excited states and, therefore, contribute to the development of tunable functionalities of PDIs and their derivatives.Fil: Negrín Yuvero, Lázaro Hassiel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mukazhanova, Aliya. Boston University; Estados UnidosFil: Freixas Lemus, Victor Manuel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Tretiak, Sergei. No especifíca;Fil: Sharifzadeh, Sahar. Boston University; Estados UnidosFil: Fernández Alberti, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentin

    Photoexcited Energy Relaxation in a Zigzag Carbon Nanobelt

    No full text
    Progress in the synthesis of new carbon nanorings and nanobelts broadens the library of materials with unique structural and optical properties that can be attractive for further potential applications in host-guest chemistry, nanoelectronics, and photonics. Herein, we study the photoexcitation and subsequent energy relaxation and redistribution of a recently synthesized zigzag carbon nanobelt using nonadiabatic excited-state molecular dynamics simulations. A gradual change in the direction of transition dipole moments and spatial localization of the electronic transition density is observed for internal conversion from the initially excited electronic state to the lowest-energy excited state. Electronic relaxation involves long-lived states associated with large energy gaps, changes of symmetry, and low couplings with the corresponding states immediately below them. The passage through these long-lived states involves significant changes in the spatial localization of the electronic transition density. Our results reveal the excited-state dynamical properties of the zigzag-type nanobelt that differentiate this molecule from other nanobelts. These insights can stimulate further designs of zigzag nanobelts tailored for specific nanoelectronic and photonic applications.Fil: Negrín Yuvero, Lázaro Hassiel. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Freixas Lemus, Victor Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Ondarse Alvarez, Dianelys. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Ledesma, Ana Estela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet Noa Sur. Centro de Investigación en Biofísica Aplicada y Alimentos. - Universidad Nacional de Santiago del Estero. Centro de Investigación en Biofísica Aplicada y Alimentos; ArgentinaFil: Tretiak, Sergei. Universidad Nacional de Santiago del Estero; ArgentinaFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Photoinduced Dynamics with Constrained Vibrational Motion: FrozeNM Algorithm

    No full text
    Ab initio molecular dynamics (AIMD) simulation, analyzed in terms of vibrational normal modes, is a widely used technique that facilitates understanding of complex structural motions and coupling between electronic and nuclear degrees of freedom. Usually, only a subset of vibrations is directly involved in the process of interest. The impact of these vibrations can be evaluated by performing AIMD simulations by selectively freezing certain motions. Herein, we present frozen normal mode (FrozeNM), a new algorithm to apply normal-mode constraints in AIMD simulations, as implemented in the nonadiabatic excited state molecular dynamics code. We further illustrate its capacity by analyzing the impact of normal-mode constraints on the photoinduced energy transfer between polyphenylene ethynylene dendrimer building blocks. Our results show that the electronic relaxation can be significantly slowed down by freezing a well-selected small subset of active normal modes characterized by their contributions in the direction of energy transfer. The application of these constraints reduces the nonadiabatic coupling between electronic excited states during the entire dynamical simulations. Furthermore, we validate reduced dimensionality models by freezing all the vibrations, except a few active modes. Altogether, we consider FrozeNM as a useful tool that can be broadly used to underpin the role of vibrational motion in a studied process and to formulate reduced models that describe essential physical phenomena.Fil: Negrín Yuvero, Lázaro Hassiel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Freixas Lemus, Victor Manuel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rodríguez Hernández, Beatriz. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rojas Lorenzo, G.. Instituto Superior de Tecnologías y Ciencias Aplicadas.; Cuba. Universidad de La Habana; CubaFil: Tretiak, Sergei. Los Alamos National Laboratory; Estados UnidosFil: Bastida, A.. Universidad de Murcia; EspañaFil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Vibrational Funnels for Energy Transfer in Organic Chromophores

    No full text
    Photoinduced intramolecular energy transfers in multichromophoric molecules involve nonadiabatic vibronic channels that act as energy transfer funnels. They commonly take place through specific directions of motion dictated by the nonadiabatic coupling vectors. Vibrational funnels may support persistent coherences between electronic states and sometimes delineate the presence of minor alternative energy transfer pathways. The ultimate confirmation of their role on the interchromophoric energy transfer can be achieved by performing nonadiabatic excited-state molecular dynamics simulations by selectively freezing the nuclear motions in question. Our results point out this strategy as a useful tool to identify and evaluate the impact of these vibrational funnels on the energy transfer processes and guide the in silico design of materials with tunable properties and enhanced functionalities. Our work encourages applications of this methodology to different chemical and biochemical processes such as reactive scattering and protein conformational changes, to name a few.Fil: Negrín Yuvero, Lázaro Hassiel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Freixas Lemus, Victor Manuel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ondarse Alvarez, Dianelys. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alfonso Hernandez, Laura. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rojas Lorenzo, German. Instituto Superior de Tecnologías y Ciencias Aplicadas.; CubaFil: Bastida, Adolfo. Universidad de Murcia; EspañaFil: Tretiak, Sergei. No especifíca;Fil: Fernández Alberti, Sebastián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore