5 research outputs found

    Hormonal and inflammatory modulatory effects of hesperidin in hyperthyroidism-modeled rats

    Get PDF
    The goal of the current study was to investigate the hormonal modulatory efficiency of hesperidin, through its regulatory potential of immunological, inflammatory, and/or antioxidant changes in on hyperthyroidism modeled adult female albino rats. Both normal and hyperthyroidism modeled rats (140-160g) were randomly divided into four groups (10 animals each) as follows: 1) healthy animals were daily ingested with saline for six weeks, and served as control group, 2) healthy animals were intraperitoneally injected with hesperidin (50 mg/kg/day) for a similar period, 3) hyperthyroidism-modeled animals without any treatment acted as positive control, and 4) hyperthyroidism-modeled animals were treated intraperitoneally with hesperidin for a similar period. The findings showed that hesperidin significantly modulated hyperthyroidism deteriorations, this was evidenced by a remarkable decline in serum T4, FT4, T3, FT3, TNF-α, IL1β-, IL4-, IL-6, and IL-10 levels, with a minor increase in TSH and significant raise in CD4+ level. Similarly, valuable improvement was observed in the oxidative status; serum SOD, GPx, CAT, and GSH levels were dramatically enhanced, associated with remarkable drop in MDA and NO levels. Also, hesperidin demonstrated nephro-hepatoprotective and anti-atherogenic potential, this was achieved from the notable reduction in ALAT and ASAT activities as well as urea, creatinine, cholesterol, and triglyceride close to the corresponding values of healthy group. These findings were supported by histological and immunohistochemical ones that showed a notable decrease in the expression of the calcitonin antibody. In conclusion, hesperidin possesses anti-hyperthyroidism, immunoinflammatory regulatory, and antioxidant activities that evidenced from the improvement of physio-architecture of the thyroid gland, reduction of inflammation and restoration of the impaired oxidative stress. This effect might be mechanized through immunological, inflammatory, apoptotic, and/or antioxidant modulatory pathways

    Covid-19 and the central nervous system: what is the interplay?

    No full text
    Since the outbreak of COVID-19 in 2019-2020, the highly contiguous disease caused by coronavirus 2 (SARS-CoV-2) spread worldwide in a short life span causing a disastrous effect and nearly 5.8 million deaths until February 2022. This global health crisis caused concerns about the disease's aetiology, epidemiology, and management. Understanding the virus's long- and short-term consequences on diverse human body organs and systems was one of the scientist's concerns despite the virus' respiratory system principal effect. Thus, after reporting neurological symptoms in approximately one-third of hospitalised patients with COVID-19, demonstrating how COVID-19 infects the central nervous system (CNS), causing neurodegenerative diseases in various patients and how the virus affects CNS function became quintessential. There are various mechanisms for COVID-19 pathophysiology, some implicating the potential virus invasion of the blood-brain barrier (BBB). Trans-synaptic and hematogenous routes are the main routes for the virus to pass through the barrier. Binding to the BBB endothelial cells is causing significant alterations in the permeability and integrity properties of the barrier, which cause an elevation of the incidence rate of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis among COVI-19 patients. COVID-19 patients developed neurological manifestations ranging from mild symptoms to severe diseases such as headache and loss of smell, encephalitis and CNS-mediated respiratory distress. However, encephalitis is not a common complication, and it has a significant mortality rate in severely ill patients due to the hyperactivation of the host immune response. Although more investigations are needed, severe COVID- 19 patients are considered at a high risk of neurodegenerative disorder as a long-term consequence of SARS-CoV-2 infection

    Protective Potential of <i>Saussurea costus</i> (Falc.) Lipsch. Roots against Cyclophosphamide-Induced Pulmonary Injury in Rats and Its In Vitro Antiviral Effect

    No full text
    Diseases and infections of the respiratory tract are common global causes of morbidity and mortality. Our study attempts to elucidate a novel remedy for respiratory ailments, in addition to identifying and quantifying the metabolites of Saussurea costus root extract (SCRE) using HPLC. Then, in vitro antiviral and in vivo lung protective effects were elucidated. The in vitro antiviral potential of SCRE was analyzed via plaque assay against the low pathogenic human coronavirus (HCoV-229E) and human influenza virus (H1N1). The value of the half maximal inhibitory concentrations (IC50) of SCRE against HCoV-229E and H1N1 influenza virus were 23.21 ± 1.1 and 47.6 ± 2.3 µg/mL, respectively. SCRE showed a histological improvement, namely a decrease in inducible nitric oxide synthase (iNOS) and caspase-3 immunoexpression in in vivo cyclophosphamide (CP)-induced acute lung injury (ALI). Moreover, there was a considerable decline in microRNA-let-7a gene expression and a significant rise in heme oxygenase-1 (HO-1) gene expression, with a marked decrease in the malondialdehyde (MDA) level. Molecular docking studies revealed that the major constituents of SCRE have a good affinity for caspase-3, HO-1, and iNOS proteins. In conclusion, a traditional plant SCRE could be a promising source of novel therapeutic agents for treating and protecting respiratory tract diseases. More future investigations should be carried out to reveal its efficacy clinically

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research
    corecore