240 research outputs found

    Milk somatic cell count and its relationship with milk yield and quality traits in Italian water buffaloes.

    Get PDF
    ABSTRACT In Southern Italy, buffalo (Bubalus bubalis) milk is mostly intended for the manufacture of Mozzarella di Bufala Campana Protected Denomination of Origin (PDO) cheese. Despite the economic boost of the last 2 decades, the buffalo farming system should be improved to maximize the efficiency of the dairy industry, improve yield and quality of milk and cheese, and work toward better animal welfare. Milk somatic cell count (SCC) is used worldwide as an indicator of udder health in individual milk and is useful for monitoring farm hygiene in bulk milk. Mastitis data are currently not available on a large scale in Italy; thus, SCC is essential for identifying animals with suspected udder infection and inflammation. Moreover, high milk SCC is associated with altered composition and acidity, and poor technological properties of milk. However, payment systems of the PDO area are based simply on the delivered volume of milk rather than on quality characteristics. Hence, currently there are no penalties for elevated SCC in bulk milk in the Italian buffalo dairy industry. In addition, SCC for buffalo milk is not mentioned by either the European Community regulations or the PDO protocol, evidencing a lack of rules for the maximum SCC limit. To provide a phenotypic characterization of SCC at the population level and to improve knowledge on buffalo milk quality, 876,299 test-day records of 70,156 buffaloes reared in the PDO area were analyzed. Data revealed that around 11% of herd-test-dates (≥5 animals sampled each) showed average milk SCC ≥400,000 cells/mL (i.e., above the threshold fixed by the European Community for bovine milk). This suggests that there is room to improve SCC at both the farm and individual level. Within first parity, more than 28 and 15% of lactations had average SCC ≥200,000 and ≥300,000 cells/mL, respectively. Both percentages increased with parity and were 39 and 25% in sixth parity, respectively. Supporting this, the proportion of lactations with average SCC ≥500,000 cells/mL increased from 6% in first parity to 12% in sixth parity. Milk yield and SCC were negatively correlated with each other, especially when SCC level was high. An ANOVA was carried out on test-day record milk yield and composition traits, with fixed effects of parity, lactation stage, class of somatic cell score (n = 6), month of calving, and their interactions; buffalo, herd-test-date, and residual were considered random effects. Significantly lower milk yield and lactose percentage were estimated in progressively higher classes of somatic cell score, whereas no significant differences were observed for fat and protein percentages. This is the first attempt to investigate milk SCC in a large data set of Italian dairy buffaloes. These findings may be helpful for defining reliable and effective SCC thresholds to be adopted whenever specific penalties for high SCC are included in milk payment systems. Finally, these results could be used in mastitis monitoring plans aiming to reduce SCC and udder issues at both the individual and farm levels in the Italian buffalo population

    Pregnancies following Protocols for Repetitive Synchronization of Ovulation in Primiparous Buffaloes in Different Seasons

    Get PDF
    Primiparous buffaloes were tested in two periods of the year characterized, by either low or high reproductive efficiency. They were subjected to two protocols for synchronization of ovulation: (i) Ovsynch (OV) and (ii) progesterone based (P4) treatment. After calving, the animals underwent a series of four cycles of re-synchronization protocols. The season did not affect pregnancy rates when the results of the two treatments were pooled together with regard to the first synchronization protocol, followed by AI. Pregnancy rates were similar during the low breeding season (50.3% vs. 57.4% in OV and P4, respectively), but different during the high breeding season (50.4% vs. 67.7% in OV and P4, respectively; p = 0.000). Logistic regression confirmed a significant effect of treatment and season interaction on pregnancy (p = 0.003). Following re-synchronization, a treatment by season interaction was detected during the low breeding season (odds ratio = 2.233), in favor of P4. Finally, a survival analysis showed a better response of animals subjected to P4 treatment from the second AI onward. In conclusion, the pooled data of pregnancy rates from both treatments between seasons are not different following AIs. Better results, though, were obtained from the implementation of P4 treatment, and are recorded in a season-fashioned mode when the comparison is made following first or cumulative AIs

    Relationship among Milk Conductivity, Production Traits, and Somatic Cell Score in the Italian Mediterranean Buffalo

    Get PDF
    The measurement of milk electrical conductivity (EC) is a relatively simple and inexpensive technique that has been evaluated as a routine method for the diagnosis of mastitis in dairy farms. The aim of this study was to obtain further knowledge on relationships between EC, production traits and somatic cell count (SCC) in Italian Mediterranean Buffalo. The original dataset included 5411 records collected from 808 buffalo cows. Two mixed models were used to evaluate both the effect of EC on MY, PP and FP and EC at test-day, and the effect of EC on somatic cell score (SCS) by using five different parameters (EC_param), namely: EC collected at the official milk recording test day (EC_day0), EC collected 3 days before official milk recording (EC_day3), and three statistics calculated from EC collected 1, 3 and 5 days before each test-day, respectively. All effects included in the model were significant for all traits, with the only exception of the effect of EC nested within parity for FP. The relationship between EC and SCS was always positive, but of different magnitude according to the parity. The regression of EC on SCS at test-day using different EC parameters was always significant except when the regression parameter was the slope obtained from a linear regression of EC collected over the 5-day period. Moreover, in order to evaluate how well the different models fit the data, three parameters were used: the Average Information Criteria (AIC), the marginal R2 and the conditional R2. According to AIC and to both the Marginal and Conditional R2, the best results were obtained when the regression parameter was the mean EC estimated over the 5-day period

    Effect of season, late embryonic mortality and progesterone production on pregnancy rates in pluriparous buffaloes (Bubalus bubalis) after artificial insemination with sexed semen

    Get PDF
    The use of sexed semen technology in buffaloes is nowadays becoming more and more accepted by farmers, to overcome the burden of unwanted male calves with related costs and to more efficiently improve production and genetic gain. The aim of this study was to verify the coupling of some variables on the efficiency of pregnancy outcome after deposition of sexed semen through AI. Pluriparous buffaloes from two different farms (N = 152) were screened, selected, and subjected to Ovsynch protocol for AI using nonsexed and sexed semen from four tested bulls. AI was performed in two distinct periods of the year: September to October and January to February. Neither farms nor bulls had a significant effect on pregnancy rates pooled from the two periods. The process for sexing sperm cells did not affect pregnancy rates at 28 days after AI, for nonsexed and sexed semen, respectively 44/73 (60.2%) and 50/79 (63.2%), P = 0.70, and at 45 days after AI, for nonsexed and sexed semen, respectively 33/73 (45.2%) and 33/79 (49.3%), P = 0.60. Pregnancy rate at 28 days after AI during the transitional period of January to February was higher when compared with September to October, respectively 47/67 (70.1%) versus 47/85 (55.2%), P = 0.06. When the same pregnant animals were checked at Day 45 after AI, the difference disappeared between the two periods, because of a higher embryonic mortality, respectively 32/67 (47.7%) versus 40/85 (47.0%), P = 0.93. Hematic progesterone concentration at Day 10 after AI did not distinguish animals pregnant at Day 28 that would or would not maintain pregnancy until Day 45 (P = 0.21). On the contrary, when blood samples were taken at Day 20 after AI, the difference in progesterone concentration between pregnant animals that would maintain their pregnancy until Day 45 was significant for both pooled (P = 0.00) and nonsexed (P = 0.00) and sexed semen (P = 0.09). A similar trend was reported when blood samples were taken at Day 25, being highly significant for pooled, nonsexed, and sexed semen (P = 0.00). Hematic progesterone concentration between the two periods of the year was highly significant for pregnant animals at 28 days from AI when blood samples were taken at Day 20 after AI for pooled, nonsexed, and sexed semen, respectively P = 0.00, 0.00, and 0.06, and for pregnant animals at Day 45 for pooled, nonsexed, and sexed semen, respectively P = 0.00, 0.00, and 0.01. From these results, it can be stated that hematic progesterone concentration measurement since Day 20 after AI can be predictive of possible pregnancy maintenance until Day 45. Furthermore, the transitional period of January to February, although characterized by a higher pregnancy outcome when compared with September to October, suffers from a higher late embryonic mortality as evidenced by a significant different hematic progesterone concentration between the two periods at Day 20 after AI

    Detection of Brucella abortus DNA and RNA in different stages of development of the sucking louse Haematopinus tuberculatus

    Get PDF
    Background: Brucellosis is considered the world’s most widespread zoonotic infection. It causes abortion and sterility in livestock leading to serious economic losses and has even more serious medical impact in humans, since it can be a trigger to more than 500,000 infections per year worldwide. The aim of this study was to evaluate the role of Haematopinus tuberculatus, a louse that can parasitize several ruminants, as a new host of brucellosis. Louse specimens were collected from seropositive and seronegative water buffaloes and divided in 3 developmental stages: adults, nymphs and nits. All samples were separately screened for Brucella spp. DNA and RNA detection by Real Time PCR. In particular, primers and probes potentially targeting the 16S rRNA and the Brucella Cell Surface 31 kDalton Protein (bcsp31) genes were used for Real Time PCR and buffalo β actin was used as a housekeeping gene to quantify host DNA in the sample. A known amount of B. abortus purified DNA was utilized for standard curve preparation and the target DNA amount was divided by the housekeeping gene amount to obtain a normalized target value. A further molecular characterization was performed for Brucella strain typing and genotyping by the Bruce-ladder, AMOS-PCR and MLVA assays. Data were statistically analysed by ANOVA. Results: Brucella abortus DNA and RNA were detected in all developmental stages of the louse, suggesting the presence of viable bacteria. Data obtained by MLVA characterization support this finding, since the strains present in animals and the relative parasites were not always identical, suggesting bacterial replication. Furthermore, the detection of Brucella DNA and RNA in nits samples demonstrate, for the first time, a trans-ovarial transmission of the bacterium into the louse. Conclusions: These findings identified H. tuberculatus as a new host of brucellosis. Further studies are needed to establish the role of this louse in the epidemiology of the disease, such as vector or reservoir

    Genomic investigation of milk production in Italian buffalo

    Get PDF
    AbstractThe aim of this study was to test the feasibility of genomic selection in the Italian Mediterranean water buffalo, which is farmed mainly in the south Italy for milk, and mozzarella, production. A total of 498 animals were genotyped at 49,164 loci. Test day records (80,417) of milk (MY), fat (FY) and protein (PY) yields from 4127 cows, born between 1975 and 2009, were analysed in a three-trait model. Cows born in 2008 and 2009 with phenotypes and genotypes were selected as validation animals (n = 50). Variance components (VC) were estimated with BLUP and ssGBLUP. Heritabilities for BLUP were 0.25 ? 0.02 (MY), 0.16 ? 0.01 (FY) and 0.25 ? 0.01 (PY). Breeding values were computed using BLUP and ssGBLUP, using VC estimated from BLUP. ssGBLUP was applied in five scenarios, each with a different number of genotypes available: (A) bulls (35); (B) validation cows (50); (C) bulls and validation cows (85); (D) all genotyped cows (463); (E) all genotypes (498). Model validation was performed using the LR method: correlation, accuracy, dispersion, and bias statistics were calculated. Average correlations were 0.71 ? 0.02 and 0.82 ? 0.01 for BLUP and ssGBLUP-E, respectively. Accuracies were also higher in ssGBLUP-E (0.75 ? 0.03) compared to BLUP (0.57 ? 0.03). The best dispersions (i.e. closer to 1) were found for ssGBLUP-C. The use of genotypes only for the 35 bulls did not change the validation values compared to BLUP. Results of the present study, even if based on small number of animals, showed that the inclusion of genotypes of females can improve breeding values accuracy in the Italian Buffalo.HighlightsThe genotypes of males did not improve the predictions.Genotypes of females improve breeding values accuracy.Slight increase in prediction accuracy with weighted ssGBLUP

    Effect of photoperiod on follicular IGF-1 and oocyte quality independently of metabolic status in buffalo heifers

    Get PDF
    The aim of this study was to determine whether buffalo heifers maintained at a constant live weight (LW) and body condition score (BCS) by a restricted diet show changes in reproductive function in response to changes in day length. Heifers were fed a low energy diet (86% daily intake recommended for the species) throughout the study, which involved an 8-week period of decreasing day length and a 7-week period of increasing day length. Weekly, LW, BCS and ovarian follicular/oocyte population were assessed. Blood and follicular fluid samples were taken at the time of ovum pick-up for hormone analyses and at 30-day intervals to measure metabolic substrates. Buffalo heifers maintained LW and BCS throughout the study and blood concentrations of the main metabolic hormones, such as GH, insulin, IGF-1 and thyroid hormones were not influenced by photoperiod. Likewise, there were no differences in metabolic substrates such as glucose, NEFA, triglycerides and HDL cholesterol, suggesting that the metabolic condition remained essentially the same. During increasing day length periods, the number of total follicles (8.4 ± 0.5 vs. 11.9 ± 0.6; p < .01), cumulus-oocyte complexes (2.2 ± 0.3 vs 4.3 ± 0.5; p < .01) and superior quality Grade A + B COCs (0.2 ± 0.1 vs 1.1 ± 0.2; p < .01) decreased. These features were associated to reduced oestradiol levels both in plasma (3.9 ± 0.4 vs 9.2 ± 0.5 pg/mL; p < .01) and follicular fluid (49.7 ± 12.9 vs. 109.1 ± 25.8 ng/mL; p = .05), as well as to reduced intrafollicular IGF-1 levels (45.5 ± 4.0 vs. 58.5 ± 3.9 ng/mL; p < .05). These findings suggest that the ovarian function in buffalo heifers is influenced by photoperiod independent of nutritional and metabolic status.Highlights Metabolic profile, LW and BCS do not change in buffalo heifers on a restricted diet Photoperiod affects ovarian function in heifers regardless of metabolic status Follicular and oocyte population decrease in increasing day length periods Oestradiol and IGF-1 levels in follicular fluid are affected by photoperio

    Productive Performance and Meat Characteristics of Kids Fed a Red Orange and Lemon Extract

    Get PDF
    This study evaluates the animal performance and meat characteristics of 60 Saanen suckling kids daily fed a red orange and lemon extract (RLE), rich in anthocyanins. In our methodology, after colostrum administration, animals are randomly assigned to two treatments: Treatment group (Group RLE; n = 30) that received RLE (90 mg/kg live body weight) as oral food additive, and a control group (Group CON; n = 30) that received a standard diet. Animals are slaughtered after 40 days. The RLE administration did not influence daily weight gain, carcass measurements, or incidences (expressed as a percentage) of different anatomical regions on the whole carcass weight. On the contrary, RLE supplementation significantly improved the oxidative profile of the meat seven days after slaughtering, as demonstrated by the reduced levels of thiobarbituric acid reactive substances (TBARS; p &lt; 0.01) and hydroperoxides (p &lt; 0.01) in Group RLE compared to Group CON. A significant influence of RLE administration is observed on day 7 for yellowness (p &lt; 0.01). There are also lower saturated and higher monounsaturated and polyunsaturated fatty acids concentration in Group RLE meat (p &lt; 0.01), which also shows lower atherogenic and thrombogenic indexes (p &lt; 0.01) compared to Group CON. The study demonstrates that the supplementation of a diet with RLE rich in anthocyanins is effective to improve the meat quality

    Efficacy and Safety of Neem Oil for the Topical Treatment of Bloodsucking Lice Linognathus stenopsis in Goats under Field Conditions

    Get PDF
    : The aim of the present study was to evaluate the efficacy and safety of neem oil on caprine pediculosis and on kids' growth performances. The neem (Azadirachta indica) belongs to the Meliaceae family, and in Eastern countries it is mainly considered for the insecticidal activities of the kernel oil. The neem seeds contain bioactive principles, such as azadirachtin A, salannin, nimbin, and nimbolide. The trial was carried out on 24 kids, 120 days old, maintained in open yards. Animals were divided in 4 homogeneous groups (n = 6 animals/group) based on age, louse count, body condition score (BCS) and live body weight: Control Group (C, saline NaCl, 0.9%), Neem Group 1 (NO-100, 100 mL of neem oil per 10 kg), Neem Group 2 (NO-200, 200 mL/10 kg), Neem Group 3 (NO-300, 300 mL/10 kg). The treatments were performed by spraying the insecticide on the goat's body. The study lasted 56 days, and weekly, the kids underwent louse count, BCS and body weight determination, and FAMACHA score. Data were analyzed by ANOVA for repeated measures. The species of lice identified was Linognathus stenopsis. Kids belonging to NO-200 and NO-300 showed a stronger reduction of louse count throughout the study (>95%). The daily weight gain recorded was significantly higher (p < 0.05) in NO-300 than C. No differences were found for BCS and FAMACHA scores. The results of this trial showed that the administration of neem oil to control caprine pediculosis caused by sucking lice represents an alternative to synthetic compounds
    • …
    corecore