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PAPER
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dDipartimento di Medicina Veterinaria e Produzioni Animali, II University of Naples, Napoli, Italy; eDipartimento di Agraria, University
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ABSTRACT
The aim of this study was to test the feasibility of genomic selection in the Italian
Mediterranean water buffalo, which is farmed mainly in the south Italy for milk, and mozzarella,
production. A total of 498 animals were genotyped at 49,164 loci. Test day records (80,417) of
milk (MY), fat (FY) and protein (PY) yields from 4127 cows, born between 1975 and 2009, were
analysed in a three-trait model. Cows born in 2008 and 2009 with phenotypes and genotypes
were selected as validation animals (n¼ 50). Variance components (VC) were estimated with
BLUP and ssGBLUP. Heritabilities for BLUP were 0.25±0.02 (MY), 0.16±0.01 (FY) and 0.25±0.01
(PY). Breeding values were computed using BLUP and ssGBLUP, using VC estimated from BLUP.
ssGBLUP was applied in five scenarios, each with a different number of genotypes available: (A)
bulls (35); (B) validation cows (50); (C) bulls and validation cows (85); (D) all genotyped cows
(463); (E) all genotypes (498). Model validation was performed using the LR method: correlation,
accuracy, dispersion, and bias statistics were calculated. Average correlations were 0.71±0.02
and 0.82 ± 0.01 for BLUP and ssGBLUP-E, respectively. Accuracies were also higher in ssGBLUP-E
(0.75± 0.03) compared to BLUP (0.57±0.03). The best dispersions (i.e. closer to 1) were found
for ssGBLUP-C. The use of genotypes only for the 35 bulls did not change the validation values
compared to BLUP. Results of the present study, even if based on small number of animals,
showed that the inclusion of genotypes of females can improve breeding values accuracy in the
Italian Buffalo.

HIGHLIGHTS

� The genotypes of males did not improve the predictions.
� Genotypes of females improve breeding values accuracy.
� Slight increase in prediction accuracy with weighted ssGBLUP.
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Introduction

The domestic water buffalo is the second dairy species
of the world, accounting for about 15% of the total
milk production in 2018 (FAOSTAT 2020). Largest buf-
falo milk producers are India, Pakistan, and China. The
world buffalo stock exhibited a relevant increase in
the last six decades, from 88 million in 1961 to 206
million in 2018 (FAOSTAT 2020), respectively. Reasons
for such an increase can be found in the high market
value of buffalo milk and of its dairy products.
Moreover, it should be remembered the great rele-
vance of this species in many rural areas of the world
as a source of meat and of traction power.

Two types of water buffalo exist, the river (Bubalus
bubalis bubalis) and the swamp (Bubalus bubalis cara-
banensis) buffalo. The two types have different num-
ber of chromosomes, 50 for the river and 48 for the
swamp, respectively (di Berardino and Iannuzzi 1981),
geographical distribution, and they are characterised
by phenotypic and genetic differences. River buffaloes
are farmed mainly in the west, from India to Europe,
whereas the swamp type can be found mostly in east-
ern Asian Countries (Iamartino et al. 2017). The river
type consists mostly of distinct breeds as a result of
selection whereas swamp consists of local unselected
populations that have evolved by adaptation to a spe-
cific environment (Zhang et al. 2016).
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River buffalo breeds have been selected for milk
production traits, although organised breeding plans
are currently running only in few countries (Zhang
et al. 2020). Genetic selection in buffalo is hampered
by the lack of reliable pedigree information (Rosati
and Van Vleck 2002; Abdel-Shafty et al. 2020;
Ghoreishifar et al. 2020), the difficult implementation
of performance recording due to the farming structure
that in several countries is based on small holders
(Mokhber et al. 2018; Abdel-Shafty et al. 2020), and to
the poor reproductive performances. As a conse-
quence, the potential of buffalo has not been com-
pletely exploited (Mokhber et al. 2018).

The availability of a medium density (90 K) SNP
platform for the buffalo (Iamartino et al. 2017) has
opened the possibility to implement Genomic
Selection (GS) programs also for this species. In par-
ticular the possibility of calculating the true realised
relationships, even when pedigree information is poor
or totally lacking (Hayes et al. 2009), could help in
addressing a main issue of buffalo breeding.
Moreover, the use of the single step GS approach
(Aguilar et al. 2010) that combines phenotypic, pedi-
gree and genomic information in the genomic BLUP
framework could further help to improve breeding val-
ues accuracy in buffalo also when only a limited por-
tion of the population is genotyped.

The genetic improvement of buffalo is a topic of
great interest for the Italian livestock industry. Italy is
the sixth Country in the world for Buffalo milk produc-
tion and the sixteenth for number of farmed animals.
The milk is mainly processed into mozzarella Campana
cheese, that is recognised by Protected Designation of
Origin (PDO) certification, and that has a high market
value. Together with Brazil, Italy has experienced the
largest relative increase (>200%) of the buffalo stock
in the last sixty years. Buffaloes farmed in Italy are of
the Mediterranean river breed, a group that includes
also the breed from Mozambique and Romania (Colli
et al. 2018). The Italian buffalo stock consists of
403,093 animals (www.vetinfo.it), and the dairy per-
formance recording plan carried out by the Italian

National Association of Buffalo Breeders (ANASB)
involved 34,490 buffaloes in 2019. In the last 15 years,
the average milk yield per lactation showed an
improvement of about 8%, from kg 2184 in 2014 to
kg 2356 in 2019, whereas fat (8.06 vs. 8.01) and pro-
tein (4.68 vs. 4.63) percentages remained quite con-
stant (www.anasb.it).

In this work, the usefulness of genomic models for
the estimation of variance components and the pre-
diction of breeding values for milk production traits in
the Italian Buffalo breed is evaluated. In particular, the
traditional pedigree based BLUP was compared with
the single-step genomic BLUP.

Materials and methods

Data used in this study were obtained from pre-exist-
ing databases and therefore the animal care approval
was not needed.

Data

The whole data set (Table 1) consisted of 80,417 test
day (TD) records of milk (MY, kg), fat (FY, kg) and pro-
tein (PY, kg) yields from 4127 buffalo cows born from
1975 to 2009 and farmed in 8 commercial herds.

Phenotypes were provided by ANASB. A sample of
463 buffalo cows of the whole data set and 35 bulls
were genotyped with the Axiom Buffalo Genotyping
Array 90 K (Iamartino et al. 2017). Quality control was
applied both on animals and SNPs with the following
criteria: call rate of animals and markers �95% (27,167
SNPs discarded); minor allele frequency �5% (8322
SNPs discarded), and P-value for the Hardy Weinberg
equilibrium test <10�6 (167 SNPs discarded).
Moreover, markers mapped on sexual chromosomes
or without known position were removed. After qual-
ity control, all animals and 49,164 markers were
retained for the analysis.

A pedigree with 7730 animals was provided by
ANASB from which 3 generations were traced back
from animals with records or genotypes, resulting in a
total of 5404 animals which were included in
the analyses.

Analysis

Data were analysed with the following 3-trait repeat-
ability animal model:

yt ¼ Xbt þ W1gt þW2ut þW3pt þ et

yt is the vector of TD records for trait t (MY, FY, or PY)
bt is the vector of fixed effects of calving year (23

Table 1. Basic statistics and phenotypic correlations.
MY (kg) FY (kg) PY (kg)

Statistics
Mean 8.74 0.76 0.41
SD 3.27 0.27 11
Max 29.8 3.35 1.65

Phenotypic correlation
MY 0.83 0.97
FY 0.82
PY

MY: Milk yield; FY: Fat yield; PY: Protein yield.
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levels), parity (5 levels), birth year (27 levels), milking
events per day (2 levels), calving month (12 levels)
and days in milk (linear covariate); gt, ut and pt are
the vectors of herd-test-day, additive genetic and per-
manent environmental random effects, respectively;
and et is the vector of random residuals. The X, W1,
W2 and W3 are the incidence matrices associating
phenotypic records to the effects in bt, gt, ut and pt,
respectively. (Co)variance structures of random effects
were Ir2

HTD, RELr
2
a, and Ir2

pe, where I is an identity
matrix, REL is the relationship matrix, r2

HTD, r
2
a, and

r2
pe, are variance components associated to random

effects of herd-test-day, additive genetic, and perman-
ent environment, respectively.

According to the relationship matrix used, two mod-
els were used: (i) the pedigree-based (BLUP) with the
numerator relationship matrix (A); (ii) the single step
genomic BLUP (ssGBLUP) where A and the genomic rela-
tionship matrix (G) are blended into H, which inverse
(H�1) was built according to Aguilar et al. (2010):

H�1 ¼ A�1 þ 0 0
0 G�1 � A�1

22

� �
where A�1 and G�1 are the inverses of the pedigree
and genomic relationship matrices, respectively; A�1

22 is
the inverse of the pedigree relationship matrix for geno-
typed animals only. The G matrix was created according
to VanRaden (2008), with the following equation:

G ¼ ZDZ0

k

where Z is the matrix of centred gene contents, D is a
diagonal matrix of SNP weights, equal to I in ssGBLUP,
and k is the scaling parameter defined as 2

P
pið1–piÞ

where pi is the allele frequency of the i-th SNP. To
avoid singularity, G was blended with 5% of A22

(VanRaden, 2008). Therefore, in the ssGBLUP model,
SNP information is used to construct the G matrix
among all the genotyped individuals.

Variance components were estimated with both
methods using the aiREML algorithm implemented in
the airemlf90 software (Misztal et al. 2014).

Breeding values were estimated with BLUP and
ssGBLUP models. The genomic model was tested in
five scenarios that differ in the number of geno-
typed animals:

A¼ genotypes available only for 35 bulls;
B¼ genotypes available only for the 50 candidates;
C¼genotypes available for 50 candidates þ
35 bulls;
D¼genotypes available for 463 cows;
E¼ genotypes available for 463 cows þ 35 bulls.

In all scenarios, candidate animals were 50 females
born in 2008 and 2009 with phenotypes and geno-
types (except scenario A) available.

To evaluate prediction accuracy and bias, the LR
method was applied (Legarra and Reverter, 2018).
Breeding values estimation was run twice: in the first
run, candidate animals had their phenotypes available
(whole data), whereas in the second they had their
phenotypes masked (partial data). The following four
statistics were computed to evaluate the models:

Dispersion:

bw, p ¼ covðûw, ûpÞ
varðûpÞ

where ûw and ûp are the vectors of breeding values
estimated for the candidates in the whole and partial
datasets, respectively.

Prediction accuracy:

cacc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covðûw, ûpÞ
ð1� FÞr̂2

u

s
where F is the average inbreeding of the candidates
and r̂2

u is the additive genetic variance.
Correlation:

qw, p ¼ corðûw, ûpÞ
Bias:

lwp ¼ �ûp � �ûw

Variance components estimated with the BLUP
model were used in the validation. Convergence criter-
ion was set to 10�15.

A further development is the weighted single-step
(WssGBLUP) where different weights are assigned to SNP
in the calculation of the genomic relationship matrix
(Wang et al. 2012). In this procedure, the optimum
weights are determined iteratively, with the first iteration
being equivalent to ssGBLUP. In the first iteration, p-val-
ues for SNPs effects were computed according to
Aguilar et al. (2019); Bonferroni correction, i.e. 0.05 div-
ided by the number of SNPs (49,164), was set as signifi-
cance threshold. Usually, 3–5 iterations are needed for
obtaining the maximum prediction accuracy. Fragomeni
et al. (2019) suggested that non-linear weights would be
a better option in WssGBLUP compared to linear weights
proposed by Wang et al. (2012). In this study, the non-
linear A weights were calculated as follows (VanRaden
2008; Legarra et al. 2018):

di ¼ CT
jâ i j
sdðâÞ�2

where di is the weight for SNP i; CT is a constant the
determines the departure from normality (usually
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assumed for the SNP effects); jâij and sdðâÞ are the
absolute effect for SNP i and the standard deviation of
the SNP effects, respectively. A CT value of 1.0 is
equivalent to the unweighted ssGBLUP and deviations
from it determine the departure from normality.
Because this value is empirically determined, we
tested three different values (1.025, 1.125, and 1.25)
and the same LR validation was applied over 5 itera-
tions of WssGBLUP to evaluate which weight and iter-
ation combination would maximise accuracy of
predictions with the least bias.

Results and discussion

Genetic parameters

Compared to values in Table 1, slightly lower average
daily milk yield (7.33 ± 3.03 kg) was reported for the
Nili-Ravi buffalo breed (Abdel-Shafy et al. 2020).

Heritability and repeatability estimates were very
similar in both considered models (Table 2); lower val-
ues of genetic parameters were obtained for FY. As far
as the kind of model is concerned, the ssGBLUP pro-
vided smaller estimates (Table 2) and smaller standard
errors for genetic correlations. These differences were
basically due to the larger additive genetic variance
and the lower permanent environmental variance esti-
mated with BLUP. On the contrary, residual variances
were the same across methods, and variance associ-
ated to HTD were very similar (Table 2).

Genetic parameters of milk production traits have
been estimated in buffalo with traditional pedigree-
based BLUP methods, both on cumulated yields and
on TD records. Lower h2 values for lactational traits
(0.14 for MY, 0.11 for FY, and 0.14 for PY) were
reported for Italian Buffalo, whereas genetic correla-
tions were similar to those of the present study
(Rosati and Van Vleck 2002). Heritability values for lac-
tational milk traits similar to those found in the

present study with BLUP and sGBLUP models were
estimated in Brazilian Murrah and Philippine buffaloes
(Tonhati et al. 2008; Aspilcueta-Borquis et al. 2010;
Flores et al. 2013). Lower genetic correlation values
among yield traits were reported for Murrah buffaloes
(Aspilcueta-Borquis et al. 2010). The modelling of TD
records for estimating variance components resulted
in lower heritability estimates. For example, Flores
et al. (2013) reported values of 0.15, 0.09, and 0.03 for
MY, FY and PY, respectively. Genetic correlations
reported by these authors were 0.99 between MY and
FY and 0.97 between MY and PY, respectively.

Genomic information has already been used to esti-
mate variance components for milk traits in buffaloes.
Liu et al. (2018) reported h2 of 0.33, 0.35 and 0.27 for
lactational MY, FY, and PY, respectively. Abdel-Shafy
et al. (2020) estimated a slightly lower h2 (0.20) for
daily milk yield in Egyptian buffalo using a ssGBLUP
approach. Some comparisons between BLUP and
GBLUP were performed. Aspilcueta-Borquis et al.
(2015) found similar heritabilities using the two meth-
ods, whereas Iamartino et al. (2017), reported h2 for
milk yield of 0.38 using the pedigree relationship
matrix and 0.45 using a genomic relationship matrix.

In the present study, genetic parameters estimated
with BLUP and ssGBLUP were quite similar. Unbiased
variance components can be estimated when the
whole data about the studied population is used in
the computation. The unbiased estimations with com-
plete data can be realised also in population under
selection if the data used to make the selection deci-
sion are included in the analysis (Cantet et al. 2000).
However, sometimes the use of complete dataset is
not possible, either because the data is too big which
makes variance components computationally expen-
sive or because of incomplete and or incorrect pedi-
grees in the historical dataset. The ssGBLUP seems to
be better than BLUP with subsets of data in simulated

Table 2. Genetic parameters estimated using two different methods, BLUP and single-step GBLUP.
BLUP ssGBLUP

MY FY PY MY FY PY
Genetic parametersa

HTD 0.24 ± 0.02 0.41 ± 0.02 0.06 ± 0.02 0.23 ± 0.01 0.40 ± 0.02 0.06 ± 0.01
Additive 1.87 ± 0.13 1.01 ± 0.08 0.38 ± 0.03 1.71 ± 0.11 0.91 ± 0.06 0.34 ± 0.02
Permanent 1.05 ± 0.10 0.73 ± 0.06 0.23 ± 0.02 1.11 ± 0.08 0.77 ± 0.04 0.24 ± 0.01
Residual 4.21 ± 0.02 4.08 ± 0.02 0.86 ± 0.02 4.21 ± 0.02 4.08 ± 0.02 0.86 ± 0.01

Heritability 0.25 ± 0.02 0.16 ± 0.01 0.25 ± 0.01 0.23 ± 0.01 0.15 ± 0.01 0.23 ± 0.01
Repeatability 0.40 ± 0.01 0.28 ± 0.01 0.40 ± 0.01 0.39 ± 0.01 0.27 ± 0.01 0.39 ± 0.01
Genetic correlation
MY 0.92 ± 0.02 0.98 ± 0.04 0.92 ± 0.01 0.97 ± 0.01
FY 0.96 ± 0.04 0.95 ± 0.01
PY

aValues for FY and PY were multiplied by 10.
BLUP: best linear unbiased prediction; ssGBLUP: single-step genomic best linear unbiased prediction; MY: Milk yield; FY: Fat yield; PY:
Protein yield; HTD: herd-test-day.
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populations under selection (Cesarani et al. 2019).
Recently, Aldridge et al. (2020) in a pig study (with 10
different traits, including mean litter birth weight, total
number born, number still born and litter mortality)
found very similar variance components using BLUP
and different ssGBLUP models. However, because gen-
omic estimates exhibited lower standard errors, they
concluded that H is a more informative than A.
Moreover, they also suggested that the genomic
approach is to be preferred for more complex models,
as those with repeated records where a permanent
environment effect is fitted. Similar results for variance
components estimated with BLUP and ssGBLUP were
recently reported for two functional traits in Italian
Simmental (Cesarani, Gaspa, et al. 2020). Hidalgo et al.
(2020) investigated the changes in genetic parameters
for fitness and growth traits in pigs under GS. These
authors reported that the genetic parameters esti-
mated with the traditional BLUP are biased in popula-
tions undergoing genomic selection and the
differences between BLUP and ssGBLUP could be
caused by genomic preselection unaccounted for
by BLUP.

Breeding value prediction

Correlation between breeding values estimated for
candidate cows with BLUP and ssGBLUP were 0.96,
0.95, and 0.95 for MY, FY, and PY, respectively.
Correlations of BLUP and ssGBLUP breeding values
estimated for the other animals were 0.99 for all the

three considered traits. Also, the rank correlations
between BLUP and ssGBLUP breeding values was high
(0.98), indicating that the methods are comparable.

Correlations and prediction accuracies increased as
the number of genotypes included in the analysis
increased (Table 3). MY showed better values com-
pared to the other two traits, probably because its
higher h2. Indeed, prediction accuracy is influenced by
the trait heritability (Hayes et al. 2009). Average corre-
lations among traits in the scenario with the largest
number of genotypes available (E) were 0.11 larger in
ssGBLUP compared to BLUP. The highest correlation
between the two sets of BVs (i.e. stability of the
model) was found with the largest number of geno-
types: values of correlation were 0.83, 0.81, and 0.82
for MY, FY, and PY. Average predictions accuracies
increased from 0.57 to 0.75 moving from BLUP
to ssGBLUP.

Interesting results have been obtained for the dis-
persion (Table 3), even if a clear pattern across the dif-
ferent scenarios could not be detected. The lowest
dispersion was observed for ssGBLUP in the scenario C
(i.e. with genotypes for candidates and 35 bulls). Even
if dispersions for ssGBLUP-E were worser than BLUP
ones, they were within a 10% difference from the
ideal value (1). Tsuruta et al. (2011) reported that val-
ues within 15% are acceptable. The lowest biases
were found when genotypes of all cows (N¼ 463)
were included in the analysis (i.e. ssGBLUP-D).

The differences in correlations and accuracies
between the use of genotypes of only females or both
females and males (i.e. scenarios B vs C and D vs E)
were limited, suggesting that the number of geno-
types available and not the source (males vs females)
mainly affects genomic prediction performances. The
inclusion of only bull genotypes (i.e. ssGBLUP-A) did
not change prediction statistics in comparison with
BLUP, apart from bias, probably because the sire con-
tribution was already included in the analysis through
the phenotypes of the cows.

Higher breeding values accuracies (þ8%), based on
the prediction error variance (Gonz�ales-R�ecio et al.
2006), were reported for ssGBLUP compared to BLUP
in Brazilian buffaloes (Aspilcueta-Borquis et al. (2015),
together with lower standard deviations for ssGBLUP.

More accurate predictions were reported by gen-
omic methods (GBLUP and ssGBLUP) compared to
BLUP in Philippine dairy buffaloes (Herrera et al. 2019).
These authors compared accuracies for genotyped
and for non-genotyped animals and they reported the
highest increase in accuracy for the ungenotyped ani-
mals (þ0.07 on average among milk, fat and protein)

Table 3. LR validation results with BLUP and single-step gen-
omic BLUP (ssGBLUP).

ssGBLUPa

BLUP A B C D E
N genotypes – 35 50 85 463 498
Correlation
Milk 0.72 0.72 0.75 0.77 0.82 0.83
Fat 0.71 0.70 0.75 0.76 0.81 0.81
Protein 0.69 0.69 0.73 0.75 0.82 0.82

Accuracy
Milk 0.60 0.60 0.67 0.68 0.77 0.77
Fat 0.55 0.55 0.62 0.63 0.71 0.72
Protein 0.57 0.57 0.65 0.66 0.76 0.76

Dispersion
Milk 0.93 0.93 0.92 0.95 0.89 0.90
Fat 0.98 0.98 0.99 1.01 0.92 0.93
Protein 0.92 0.92 0.93 0.96 0.92 0.92

Bias
Milk �0.107 �0.106 �0.103 �0.099 �0.014 �0.019
Fat �0.013 �0.013 �0.013 �0.015 �0.005 �0.006
Protein �0.005 �0.005 �0.005 �0.005 �0.001 �0.001

aA: genotypes only for 35 bulls; B: genotypes only for the 50 candidates;
C: genotypes for 50 candidates þ 35 bulls; D: genotypes for 463 cows; E:
genotypes for 463 cows þ 35 bulls.
BLUP: best linear unbiased prediction; ssGBLUP: single-step genomic
best linear unbiased prediction.
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compared to the group of genotyped animals only
(þ0.03 on average among milk, fat and protein).

LR method was recently widely adopted to validate
breeding values estimation in almost all livestock spe-
cies, such as cattle (Porto Neto et al. 2019; Cesarani,
Hidalgo, et al. 2020; Durbin et al. 2020), sheep
(Granado-Tajada et al. 2020; Macedo et al. 2020), pigs
(Aliakbari et al. 2020), chicken (Chu et al. 2019;
Bermann et al. 2021) and fish (Silva et al. 2019).
Results about the comparison between BLUP and
ssGBLUP, by using LR method, can change according
to the considered species. No clear advantages were
found for genomic selection of Latxa dairy sheep
breed (Granado-Tajada et al. 2020), whereas other
studies reported better performances of ssGBLUP com-
pared to BLUP (Chu et al. 2019; Silva et al. 2019). For
example, Chu et al. (2019) reported that the use of
ssGBLUP increased population accuracy of BV for both
genotyped and non-genotyped birds compared to the
use of BLUP. However, bias of BV prediction increased
for non-genotyped birds.

The results for the WssGBLUP are presented in
Table 4. Overall, there was an increase in prediction
accuracy and a reduction in bias which are beneficial,
however at the same time there was an increase in
the dispersion of the breeding values, which is
undesirable. The difference between iterations (2–5)
was small, with the second iteration reaching the
highest accuracy. On the other hand, there was a con-
siderable increase in accuracy when the CT values
were increased. For instance, for MY prediction accur-
acy went from 0.79 (CT ¼ 1.025) to 0.82 (CT ¼ 1.25)
which represent an increase of 2.6 and 6.5% respect-
ively, over ssGBLUP.

The performance of the WssGBLUP compared to
ssGBLUP depends on the architecture of the trait and
on the sample size. For instance, Lourenco et al.
(2017), showed that for highly polygenic traits there
were no improvements in prediction accuracy with
WssGBLUP compared to ssGBLUP but under oligogenic
traits, accuracy can be improved with SNP weighting.
Additionally, with larger sample sizes, the benefit of
using different weights for markers may be reduced,
as pointed out by Karaman et al. (2016) who showed
that the prediction accuracy of Bayesian variable selec-
tion methods and GBLUP converged to the similar
prediction accuracy once the sample size was
large enough.

As aforementioned, the WssGBLUP is a weighted
version of ssGBLUP in which different weights are
used for each SNP. Giving more weights to some SNPs
allows the model to take into account the presence of
major genes or QTL that affect the trait of interest.
This is particularly appealing for species, like buffalo,
where milk protein composition or cheesemaking
traits are key features. In this regard, the integration
of as1 casein gene in genomic evaluation of dairy
goats are effective examples. Dagnachew et al. (2011)
analysed 38 SNPs located within the four casein genes
in Norwegian goats and showed significant additive
effect of a single SNP within two casein variants (i.e.
CSN1S1 and CSN3 genes) on fat and protein percen-
tages, milk yield and milk taste. Pizarro Inostroza et al.
(2020) analysed the effects of considering 48 casein
loci-located SNP in the Murciano-Granadina goats.
Teissier et al. (2018) investigated three weighted
ssGBLUP methods to integrate information on the as1
casein in genomic evaluations of dairy goats. All

Table 4. Weighted ssGBLUP-E using the largest number of genotypes (463 cows þ 35 bulls).

CT
1.025 1.125 1.250

Round ssGBLUP� 2 3 4 5 2 3 4 5 2 3 4 5

Correlation
Milk 0.83 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.81 0.81 0.81 0.81
Fat 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.80 0.80 0.80 0.80
Protein 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.81 0.81 0.81 0.80

Accuracy
Milk 0.77 0.79 0.79 0.79 0.79 0.80 0.80 0.80 0.80 0.81 0.82 0.82 0.82
Fat 0.72 0.73 0.73 0.73 0.73 0.75 0.75 0.75 0.75 0.76 0.77 0.77 0.77
Protein 0.76 0.77 0.77 0.77 0.77 0.79 0.79 0.79 0.79 0.80 0.81 0.81 0.81

Dispersion
Milk 0.90 0.89 0.89 0.89 0.89 0.88 0.88 0.88 0.88 0.86 0.85 0.85 0.85
Fat 0.93 0.92 0.92 0.92 0.92 0.91 0.91 0.91 0.91 0.90 0.89 0.88 0.88
Protein 0.92 0.92 0.92 0.92 0.92 0.90 0.90 0.90 0.90 0.89 0.88 0.87 0.87

Bias
Milk �0.019 �0.0172 �0.0172 �0.0172 �0.0172 �0.0113 �0.0099 �0.0096 �0.0095 �0.0047 �0.0005 0.0023 0.0028
Fat �0.006 �0.0060 �0.0060 �0.0060 �0.0060 �0.0057 �0.0056 �0.0055 �0.0055 �0.0052 �0.0049 �0.0048 �0.0048
Protein �0.001 �0.0012 �0.0012 �0.0012 �0.0012 �0.0010 �0.0009 �0.0009 �0.0009 �0.0007 �0.0005 �0.0004 �0.0004

�Results from the 1st iteration of WssGBLUP are the same as unweighted ssGBLUP.
CT: carcass traits; ssGBLUP: single-step genomic best linear unbiased prediction.
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authors concluded that the inclusion of detailed infor-
mation on major genes (e.g. DGAT1 for fat content or
as1 casein for protein content) with additive, domin-
ance, and epistatic effects in the genetic evaluation
could improve both the statistical power of the model
and the accuracy of breeding values for milk yield and
composition compared to a model without
these effects.

Indeed, the slight improvement in accuracy with
WssGBLUP in our study may indicate the presence of
important markers associated with these traits.
However, only one SNP showed a p-value of its effect
passing the significance threshold (Supplementary
Figure 1). The low number of genotypes involved in
the present study could have been influenced the
results; anyway, further studies will be needed to
determine the genomic make up of milk production in
Italian buffalos. Liu et al. (2018) reported 4 SNP in 2
genomic regions significantly associated with fat yield
and protein percentage in water buffalo and con-
cluded that a more precise map of the buffalo gen-
ome as well as a larger sample size is needed in
future studies to be able to identify important genes
affecting the traits.

It should be also pointed out that the use of
WssGBLUP resulted in an increase of prediction accur-
acy but together with an increase of breeding value
dispersion. This latter statistic should be as much as
closer to 1, which means that breeding values are not
under or over estimated. In our results, the dispersion
was 0.90, 0.93, and 0.92 for ssGBLUP (scenario E), com-
pared to 0.86, 0.90, and 0.89 for WssGBLUP (CT ¼
1.25, iteration 2) for MY, FY, and PY, respectively
(Table 4). As pointed out by Legarra and Reverter
(2017), the bias and the slope of the regression (dis-
persion) need to be taken in to account specially
when proven and young animals are mixed in the
population, because they could affect selection deci-
sions, beyond the accuracy of selection. In this scen-
ario, one would have to establish a balance between
the highest gains in accuracy and the least bias and
dispersion of the breeding values when choosing the
model for the official evaluations.

Conclusions

This study, even if based on a small number of geno-
typed animals, provided interesting insights about the
use and future application of ssGBLUP in the Italian
Buffalo. Variance components estimated using BLUP
and ssGBLUP were similar, but the latter model
showed lower standard deviations for genetic

correlations. The results showed that the inclusion of
genotypes only for bulls (i.e. ssGBLUP-A) did not lead
to any improvements compared to BLUP. On the con-
trary, the inclusion of genotypes for cows led to an
increase in almost all validation parameters. Thus, to
implement a genomic evaluation in the Italian Buffalo,
it is important to emphasise that female genotyping
could increase the accuracies of the prediction com-
pared to both pedigree-based and genomic evalua-
tions with only male genotypes models.
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