10 research outputs found

    Multiple effects of silymarin on the hepatitis C virus lifecycle

    Get PDF
    Silymarin, an extract from milk thistle (Silybum marianum), and its purified flavonolignans have been recently shown to inhibit hepatitis C virus (HCV) infection, both in vitro and in vivo. In the current study, we further characterized silymarin's antiviral actions. Silymarin had antiviral effects against hepatitis C virus cell culture (HCVcc) infection that included inhibition of virus entry, RNA and protein expression, and infectious virus production. Silymarin did not block HCVcc binding to cells but inhibited the entry of several viral pseudoparticles (pp), and fusion of HCVpp with liposomes. Silymarin but not silibinin inhibited genotype 2a NS5B RNA-dependent RNA polymerase (RdRp) activity at concentrations 5 to 10 times higher than required for anti-HCVcc effects. Furthermore, silymarin had inefficient activity on the genotype 1b BK and four 1b RDRPs derived from HCV-infected patients. Moreover, silymarin did not inhibit HCV replication in five independent genotype 1a, 1b, and 2a replicon cell lines that did not produce infectious virus. Silymarin inhibited microsomal triglyceride transfer protein activity, apolipoprotein B secretion, and infectious virion production into culture supernatants. Silymarin also blocked cell-to-cell spread of virus. CONCLUSION: Although inhibition of in vitro NS5B polymerase activity is demonstrable, the mechanisms of silymarin's antiviral action appear to include blocking of virus entry and transmission, possibly by targeting the host cell

    Innate Immune Tolerance and the Role of Kupffer Cells in Differential Responses to Interferon Therapy Among Patients With HCV Genotype 1 Infection

    Get PDF
    In patients with hepatitis C virus (HCV) infection, interferon alfa (IFN-α) alters expression of IFN-stimulated genes (ISGs), but little is understood about factors that determine outcomes of therapy. We used a systems biology approach to evaluate the acute response of patients with chronic hepatitis C to IFN-α therapy

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    HCV triggers the NLRP3 inflammasome and IL-1β maturation through induction of potassium efflux after macrophage uptake.

    No full text
    <p>(<b>A</b>) Secreted IL-β protein levels (upper panel) and immunoblot analysis of IL-1β (lower panel set) of THP-1 treated with transfection reagent or transfected with either with full length HCV RNA or polyU/UC RNA or exposed to HCV (moi = 0.01). (<b>B</b>) IL-β mRNA expression in THP1 stably expressing non-targeting control shRNA or shRNA specific to NLRP3 or caspase-1. (<b>C</b>) Immunoblot of caspase-1 and IL-1β in THP1 stably expressing non-targeting control the indicated shRNA. (<b>D</b>) THP-1 were pre-treated with DMSO (control) or with 6.25, 12.5, 25, 50, 100, 200 µM of potassium channel inhibitor glybenclamide (Glyben) for 2 hrs followed by mock treatment (M; control) or HCV (moi = 0.01) exposure in the presence of glyben for an additional 1 hr. (E) IL-1β p17 abundance in THP-1 cultured in normal media or in media containing NaCl (100 mM) or KCl (100 mM) for 1 hr followed by mock-treatment (-) or exposure to HCV (moi = 0.01) in the same media for an additional 1 hr.</p

    HCV stimulates IL-1β production upon uptake by macrophages.

    No full text
    <p>(<b>A</b>) IL-1β mRNA expression (upper panel) and secreted IL-1β protein levels (lower panel) from primary monocyte-derived macrophages of healthy human donor blood. Cells were mock-treated or treated with infectious HCV supernatant (moi = 0.01 based on Huh7 focus forming units (ffu) or treated with 1 µg/ml of LPS and ATP 5 mM (LPS/ATP; positive control). (<b>B</b>) Intracellular cytokine staining of treated CD14+ cells recovered from saline washout of healthy donor liver. Cells were left untreated (unstim) or were cultured with conditioned media (mock, negative control), LPS (positive control) or treated with UV-inactivated HCV (moi = 0.01 based on Huh7 focus forming units (ffu)). Data are shown from one donor and are representative two experiments each of cells collected from two independent donors. In the analysis shown the frequency of IL-1β-expressing cells was: unstim, 2.7%; mock, 6.4%; LPS, 76.5%; UV-HCV. 67.6%. (<b>C</b>)–(<b>I</b>) Analysis of THP1 cells. (<b>C</b>) IL-1β mRNA expression post exposure to HCV. (<b>D</b>) IL-1β protein secretion after treatment with variable doses of HCV (moi = 0.001, 0.01 or 0.1 Huh7 ffu) or LPS/ATP at 1 µg/ml for 24 hr. (<b>E</b>) Immunoblot showing the kinetics of caspase-1 activation after HCV exposure. (<b>F</b>) Levels of secreted IL-1β over a time course after HCV exposure (moi = 0.01 based on Huh7 ffu). (<b>G</b>) IL-1β levels secreted 24 hr after exposure to (left to right) cell culture media, sucrose solution, sucrose-purified culture media, infectious HCV supernatant or sucrose-purified HCV virions. (<b>H</b>) IL-1β mRNA expression in pre-treated with DMSO (control), bafilomycin (2.5 uM) or cytochalasin D (10 µM) cells and exposed to media or infectious HCV supernatant (moi = 0.01 Huh7 ffu). (<b>I</b>) Levels of secreted IL-1β 24 hr post treatment with conditioned media alone (mock) or treatment with live infectious HCV (HCV, moi = 0.01) or UV-inactivated HCV (HCV-UV). <i>*P = 0.0175</i> and <i>***P = 0.0005</i>, by student <i>t-test</i>.</p

    IL-1β associates with hepatic disease and is produced by liver macrophages in chronic hepatitis C patients.

    No full text
    <p>(<b>A</b>) Hierarchical clustering of differentially expressed genes as determined by RNA-seq analysis of liver specimens from control or HCV patients with mild (no fibrosis) and severe (cirrhosis) liver disease. Clustering analysis of a total of 158 differentially expressed genes (>1.5-fold change and FDR, 0.05) in the cytokine-cytokine receptor and chemokine signaling pathways is shown. The expression of group-3 genes were increased only in patients with severe liver disease; Group-3 genes and the expression key are shown at the right (for full description, see <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1003330#ppat.1003330.s011" target="_blank">Table S1</a>). For analysis see methods. (<b>B</b>) IL-1β levels from sera of chronic hepatitis C patients and healthy controls. (<b>C</b>) Immunohistochemical staining and confocal microscopy analysis of healthy liver and chronic hepatitis C patient liver samples. CD68 marks macrophages (Kupffer cells or infiltrating macrophages) (red), IL-1β (green), and DRAQ5 (blue) stains the nuclei. A quantification plot of CD68+IL-1β+ cells and CD68+IL-1β - of the total IL-1β+ cells is depicted from chronically infected (three patients,) and normal healthy liver samples. The area within the white box of the far right merged panel is enlarged and shown with cell frequency counts at right. <i>**P = 0.0062</i> and <i>***p<0.0001</i> by student's t-test. Arrows (white) indicate hepatocytes adjacent to CD68+/IL-1β+ Kupffer cells (yellow arrows).</p

    HCV stimulation of IL-1β expression occurs through MyD88-dependent viral RNA signaling by TLR7.

    No full text
    <p>(<b>A</b>) THP1 cells stably expressing non-targeting shRNA (control) or shRNA specific to MAVS or MyD88 were mock treated with media alone, exposed to HCV (moi = 0.01) or treated with LPS (1 µg/ml) and IL-1β expression assessed by qRT-PCR, <i>*P = 0.0341</i>and <i>*P = 0.013</i>. (<b>B</b>) Immunoblot analysis of IL-1β in THP-1 stably expressing the indicated shRNA. Cells were exposed to media alone (M) or infectious HCV supernatant for 6 hr. (<b>C</b>) Immunoblot of caspase-1 in THP-1 stably expressing the indicated shRNA. (<b>D</b>) IL-1β (upper panel) and IFN-β (lower panel) mRNA expression in THP-1 post-treatment with transfection reagent alone (control) or transfected with full length HCV RNA or poly IC (transfected); or treated with media containing full length HCV RNA or poly IC (extracellular). (<b>E</b>) IL-1β mRNA levels in THP-1 transfected with HCV polyU/UC RNA (1 µg/ml), HCV X-region (1 µg/ml) or exposed to infectious HCV for 6 hrs. (<b>F</b>) IL-1β (upper panel) and IFN-β (lower panel) mRNA expression in THP1 harboring the indicated shRNA, <i>*P = 0. 0115</i>, <i>**P = 0.0094</i> and <i>***P = 0.0009</i>. (<b>G</b>) IL-1β (upper panel) and IFN-β (lower panel) mRNA expression in THP-1 cells transfected with increasing doses (0.125, 0.25, 0.5, 1 and 2 µg/ml) of HCV polyU/UC RNA. (<b>H</b>) IL-1β mRNA expression in THP1 cells stably expressing non-targeting or shRNA specific to TLR7, <i>*P = 0.022</i>, by student's t-test.</p

    Macrophage exposure to HCV induces inflammasome signaling of IL-1β and proinflammatory cytokine and chemokine expression.

    No full text
    <p>(<b>A</b> and <b>B</b>) RNA-seq analysis to directly compare the transcription profile of THP1 cells after acute HCV (moi = 0.01) exposure for 6 and 16 hours and chronic hepatitis C patient liver staged by mild or severe disease. (<b>A</b>) The Venn diagram shows the number of differentially expressed genes (>1.5-fold change and FDR, 0.05) that were unique and common to THP-1 cells and chronic hepatitis C patient liver in the most highly represented KEGG pathways in both datasets, the cytokine-cytokine receptor signaling, and chemokine signaling pathways. (<b>B</b>) Hierarchical clustering analysis of differentially expressed genes common to both HCV-exposed THP-1 cells and chronic hepatitis C liver. Group-4 genes were expressed in both THP-1 cells and chronic hepatitis C liver (for full description, see <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1003330#ppat.1003330.s012" target="_blank">Table S2</a>). Group-4 genes and the expression key are shown at the right. See Methods for a description of bioinformatics analysis. (<b>C</b>) Model of hepatic inflammatory signaling during HCV infection. Sensing of HCV by hepatic macrophages triggers the induction of IL-1β and the inflammatory response. HCV-induced inflammasome activation is initiated by endosomal TLR7 engagement of viral RNA to drive the induction of IL-1β expression via MyD88. In addition, HCV triggers potassium efflux for NLRP3 activation to produce mature IL-1β. Secreted IL-1β induces the expression of a wide-range of proinflammatory mediators and stimulates an inflammatory response that confers liver disease during chronic infection.</p
    corecore