47 research outputs found

    Four-nucleon scattering with a correlated Gaussian basis method

    Full text link
    Elastic-scattering phase shifts for four-nucleon systems are studied in an abab-initioinitio type cluster model in order to clarify the role of the tensor force and to investigate cluster distortions in low energy d+dd+d and t+pt+p scattering. In the present method, the description of the cluster wave function is extended from a simple (0ss) harmonic-oscillator shell model to a few-body model with a realistic interaction, in which the wave function of the subsystems are determined with the Stochastic Variational Method. In order to calculate the matrix elements of the four-body system, we have developed a Triple Global Vector Representation method for the correlated Gaussian basis functions. To compare effects of the cluster distortion with realistic and effective interactions, we employ the AV8^{\prime} potential as a realistic interaction and the Minnesota potential as an effective interaction. Especially for 1S0^1S_0, the calculated phase shifts show that the t+pt+p and h+nh+n channels are strongly coupled to the d+dd+d channel for the case of the realistic interaction. On the contrary, the coupling of these channels plays a relatively minor role for the case of the effective interaction. This difference between both potentials originates from the tensor term in the realistic interaction. Furthermore, the tensor interaction makes the energy splitting of the negative parity states of 4^4He consistent with experiments. No such splitting is however reproduced with the effective interaction

    Helium halo nuclei from low-momentum interactions

    Full text link
    We present ground-state energies of helium halo nuclei based on chiral low-momentum interactions, using the hyperspherical-harmonics method for 6He and coupled-cluster theory for 8He, with correct asymptotics for the extended halo structure.Comment: 7 pages, 3 figures, contribution to ENAM08 conference proceedings, added results, to appear in EPJ

    Continuity and individuality in Medieval Hereford, England: A stable isotope approach to bulk bone and incremental dentine

    Get PDF
    In this study, bulk bone collagen carbon (δ13C) and nitrogen (δ15N) isotope data from 49 individuals, recovered from two Medieval burial grounds in Hereford, England, are coupled with incremental dentine data from five individuals with high δ15N bone values who survived into old age, to see whether the high δ15N values were consistent throughout their childhood and adolescence. There are statistically insignificant differences between mean bone δ13C and δ15N values from the two Hereford populations, exhumed at Cathedral Close and St. Guthlac's Priory, despite temporal and demographic differences (St Guthlac's mean: δ13C −19.4 ± 0.5‰ and δ15N 10.9 ± 1.2‰; Hereford Cathedral mean: δ13C −19.6 ± 0.4‰ and δ15N 10.4 ± 0.9‰, 1σ). In comparison to other contemporary urban populations, the Hereford individuals present significantly lower but more variable δ15N values, suggesting a diet low in protein from high trophic level foods such as meat and milk, possibly the result of differing social status or geographic factors. The approximately 23-year long incremental dentine profiles all show considerable fluctuation in stable isotope values during childhood and adolescence for all individuals until around age 20, suggesting possible influence by physiological processes related to growth and development

    Sensitivity analysis, molecular systematics and natural history evolution of Scathophagidae (Diptera: Cyclorrhapha: Calyptratae)

    Full text link
    The 60 000 described species of Cyclorrhapha are characterized by an unusual diversity in larval life-history traits, which range from saprophagy over phytophagy to parasitism and predation. However, the direction of evolutionary change between the different modes remains unclear. Here, we use the Scathophagidae (Diptera) for reconstructing the direction of change in this relatively small family ( 250 spp.) whose larval habits mirror the diversity in natural history found in Cyclorrhapha. We subjected a molecular data set for 63 species (22 genera) and DNA sequences from seven genes (12S, 16S, Cytb, COI, 28S, Ef1-alfa, Pol II) to an extensive sensitivity analysis and compare the performance of three different alignment strategies (manual, Clustal, POY). We find that the default Clustal alignment performs worst as judged by character incongruence, topological congruence and branch support. For this alignment, scoring indels as a fifth character state worsens character incongruence and topological congruence. However, manual alignment and direct optimization perform similarly well and yield near-identical trees, although branch support is lower for the direct-optimization trees. All three alignment techniques favor the upweighting of transversion. We furthermore confirm the independence of the concepts ‘‘node support’’ and ‘‘node stability’’ by documenting several cases of poorly supported nodes being very stable and cases of well supported nodes being unstable. We confirm the monophyly of the Scathophagidae, its two constituent subfamilies, and most genera. We demonstrate that phytophagy in the form of leaf mining is the ancestral larval feeding habit for Scathophagidae. From phytophagy, two shifts to saprophagy and one shift to predation has occurred while a second origin of predation is from a saprophagous ancestor
    corecore