7 research outputs found

    Hypomorphic Mutations in TONSL Cause SPONASTRIME Dysplasia

    Get PDF
    SPONASTRIME dysplasia is a rare, recessive skeletal dysplasia characterized by short stature, facial dysmorphism, and aberrant radiographic findings of the spine and long bone metaphysis. No causative genetic alterations for SPONASTRIME dysplasia have yet been determined. Using whole-exome sequencing (WES), we identified bi-allelic TONSL mutations in 10 of 13 individuals with SPONASTRIME dysplasia. TONSL is a multi-domain scaffold protein that interacts with DNA replication and repair factors and which plays critical roles in resistance to replication stress and the maintenance of genome integrity. We show here that cellular defects in dermal fibroblasts from affected individuals are complemented by the expression of wild-type TONSL. In addition, in vitro cell-based as-says and in silico analyses of TONSL structure support the pathogenicity of those TONSL variants. Intriguingly, a knock-in (KI) Tonsl mouse model leads to embryonic lethality, implying the physiological importance of TONSL. Overall, these findings indicate that genetic variants resulting in reduced function of TONSL cause SPONASTRIME dysplasia and highlight the importance of TONSL in embryonic development and postnatal growth.Peer reviewe

    De novo variants underlying monogenic syndromes with intellectual disability in a neurodevelopmental cohort from India

    No full text
    The contribution of de novo variants as a cause of intellectual disability (ID) is well established in several cohorts reported from the developed world. However, the genetic landscape as well as the appropriate testing strategies for identification of de novo variants of these disorders remain largely unknown in low-and middle-income countries like India. In this study, we delineate the clinical and genotypic spectrum of 54 families (55 individuals) with syndromic ID harboring rare de novo variants. We also emphasize on the effectiveness of singleton exome sequencing as a valuable tool for diagnosing these disorders in resource limited settings. Overall, 46 distinct disorders were identified encompassing 46 genes with 51 single-nucleotide variants and/or indels and two copy-number variants. Pathogenic variants were identified in CREBBP, TSC2, KMT2D, MECP2, IDS, NIPBL, NSD1, RIT1, SOX10, BRWD3, FOXG1, BCL11A, KDM6B, KDM5C, SETD5, QRICH1, DCX, SMARCD1, ASXL1, ASXL3, AKT3, FBN2, TCF12, WASF1, BRAF, SMARCA4, SMARCA2, TUBG1, KMT2A, CTNNB1, DLG4, MEIS2, GATAD2B, FBXW7, ANKRD11, ARID1B, DYNC1H1, HIVEP2, NEXMIF, ZBTB18, SETD1B, DYRK1A, SRCAP, CASK, L1CAM, and KRAS. Twenty-four of these monogenic disorders have not been previously reported in the Indian population. Notably, 39 out of 53 (74%) disease-causing variants are novel. These variants were identified in the genes mainly encoding transcriptional and chromatin regulators, serine threonine kinases, lysosomal enzymes, molecular motors, synaptic proteins, neuronal migration machinery, adhesion molecules, structural proteins and signaling molecules

    Clinically relevant variants in a large cohort of Indian patients with Marfan syndrome and related disorders identified by next-generation sequencing

    No full text
    Abstract Marfan syndrome and related disorders are a group of heritable connective tissue disorders and share many clinical features that involve cardiovascular, skeletal, craniofacial, ocular, and cutaneous abnormalities. The majority of affected individuals have aortopathies associated with early mortality and morbidity. Implementation of targeted gene panel next-generation sequencing in these individuals is a powerful tool to obtain a genetic diagnosis. Here, we report on clinical and genetic spectrum of 53 families from India with a total of 83 patients who had a clinical diagnosis suggestive of Marfan syndrome or related disorders. We obtained a molecular diagnosis in 45/53 (85%) index patients, in which 36/53 (68%) had rare variants in FBN1 (Marfan syndrome; 63 patients in total), seven (13.3%) in TGFBR1/TGFBR2 (Loeys–Dietz syndrome; nine patients in total) and two patients (3.7%) in SKI (Shprintzen–Goldberg syndrome). 21 of 41 rare variants (51.2%) were novel. We did not detect a disease-associated variant in 8 (15%) index patients, and none of them met the Ghent Marfan diagnostic criteria. We found the homozygous FBN1 variant p.(Arg954His) in a boy with typical features of Marfan syndrome. Our study is the first reporting on the spectrum of variants in FBN1, TGFBR1, TGFBR2, and SKI in Indian individuals

    Clinical and genetic spectrum of 104 Indian families with central nervous system white matter abnormalities

    Full text link
    Genetic disorders with predominant central nervous system white matter abnormalities (CNS WMAs), also called leukodystrophies, are heterogeneous entities. We ascertained 117 individuals with CNS WMAs from 104 unrelated families. Targeted genetic testing was carried out in 16 families and 13 of them received a diagnosis. Chromosomal microarray (CMA) was performed for three families and one received a diagnosis. Mendeliome sequencing was used for testing 11 families and all received a diagnosis. Whole exome sequencing (WES) was performed in 80 families and was diagnostic in 52 (65%). Singleton WES was diagnostic for 50/75 (66.67%) families. Overall, genetic diagnoses were obtained in 77 families (74.03%). Twenty‐two of 47 distinct disorders observed in this cohort have not been reported in Indian individuals previously. Notably, disorders of nuclear mitochondrial pathology were most frequent (9 disorders in 20 families). Thirty‐seven of 75 (49.33%) disease‐causing variants are novel. To sum up, the present cohort describes the phenotypic and genotypic spectrum of genetic disorders with CNS WMAs in our population. It demonstrates WES, especially singleton WES, as an efficient tool in the diagnosis of these heterogeneous entities. It also highlights possible founder events and recurrent disease‐causing variants in our population and their implications on the testing strategy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/170794/1/cge14037.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/170794/2/cge14037_am.pd
    corecore