17 research outputs found

    Image-guided liver surgery: intraoperative projection of computed tomography images utilizing tracked ultrasound

    Get PDF
    AbstractBackgroundUltrasound (US) is the most commonly used form of image guidance during liver surgery. However, the use of navigation systems that incorporate instrument tracking and three-dimensional visualization of preoperative tomography is increasing. This report describes an initial experience using an image-guidance system with navigated US.MethodsAn image-guidance system was used in a total of 50 open liver procedures to aid in localization and targeting of liver lesions. An optical tracking system was employed to localize surgical instruments. Customized hardware and calibration of the US transducer were required. The results of three procedures are highlighted in order to illustrate specific navigation techniques that proved useful in the broader patient cohort.ResultsOver a 7-month span, the navigation system assisted in completing 21 (42%) of the procedures, and tracked US alone provided additional information required to perform resection or ablation in six procedures (12%). Average registration time during the three illustrative procedures was <1min. Average set-up time was approximately 5min per procedure.ConclusionsThe Explorer™ Liver guidance system represents novel technology that continues to evolve. This initial experience indicates that image guidance is valuable in certain procedures, specifically in cases in which difficult anatomy or tumour location or echogenicity limit the usefulness of traditional guidance methods

    Solution-Mediated Polymorphic Transformation: Form II to Form III Piracetam in Organic Solvents

    No full text
    NoThe solution-mediated polymorphic transformation from Form II to Form III 2-oxo-1-pyrrolidine acetamide (piracetam) was investigated in seven organic solvents over the temperature range of 5–50 °C. The transformation rate increased as a function of temperature, agitation, and the solubility of piracetam in the host solvent. However, this trend was reversed in 2-propanol. Molecular modeling demonstrated that 2-propanol forms interactions with piracetam molecules in solution stronger than those formed by other solvents, thereby retarding the nucleation and growth of FIII(6.525) during the transformation in this solvent.SF

    Fragment orbital based description of charge transfer in peptides including backbone orbitals

    Get PDF
    Charge transfer in peptides and proteins can occur on different pathways, depending on the energetic landscape as well as the coupling between the involved orbitals. Since details of the mechanism and pathways are difficult to access experimentally, different modeling strategies have been successfully applied to study these processes in the past. These can be based on a simple empirical pathway model, efficient tight binding type atomic orbital Hamiltonians or ab initio and density functional calculations. An interesting strategy, which allows an efficient calculations of charge transfer parameters, is based on a fragmentation of the system into functional units. While this works well for systems like DNA, where the charge transfer pathway is naturally divided into distinct molecular fragments, this is less obvious for charge transfer along peptide and protein backbones. In this work, we develop and access a strategy for an effective fragmentation approach, which allows one to compute electronic couplings for large systems along nanosecond time scale molecular dynamics trajectories. The new methodology is applied to a solvated peptide, for which charge transfer properties have been studied recently using an empirical pathway model. As could be expected, dynamical effects turn out to be important, which emphasizes the importance of using effective quantum approaches which allow for sufficient sampling. However, the computed rates are orders of magnitude smaller than experimentally determined, which indicates the shortcomings of present modeling approaches

    Probing the Electronic Structure of a Photoexcited Solar Cell Dye with Transient X-ray Absorption Spectroscopy

    No full text
    This study uses transient X-ray absorption (XA) spectroscopy and time-dependent density functional theory (TD-DFT) to directly visualize the charge density around the metal atom and the surrounding ligands following an ultrafast metal-to-ligand charge-transfer (MLCT) process in the widely used RuII solar cell dye, Ru(dcbpy)2(NCS)2 (termed N3). We measure the Ru L-edge XA spectra of the singlet ground (1A1) and the transient triplet (3MLCT) excited state of N34– and perform TD-DFT calculations of 2p core-level excitations, which identify a unique spectral signature of the electron density on the NCS ligands. We find that the Ru 2p, Ru eg, and NCS π* orbitals are stabilized by 2.0, 1.0, and 0.6 eV, respectively, in the transient 3MLCT state of the dye. These results highlight the role of the NCS ligands in governing the oxidation state of the Ru center
    corecore