5 research outputs found

    Characterising the incidence and mode of visceral stent failure after fenestrated endovascular aneurysm repair (FEVAR).

    Get PDF
    BackgroundIn FEVAR, visceral stents provide continuity and maintain perfusion between the main body of the stent and the respective visceral artery. The aim of this study was to characterise the incidence and mode of visceral stent failure (type Ic endoleak, type IIIa endoleak, stenosis/kink, fracture, crush and occlusion) after FEVAR in a large cohort of patients at a high-volume centre.MethodsA retrospective review of visceral stents placed during FEVAR over 15 years (February 2003-December 2018) was performed. Kaplan-Meier analyses of freedom from visceral stent-related complications were performed. The outcomes between graft configurations of varying complexity were compared, as were the outcomes of different stent types and different visceral vessels.ResultsVisceral stent complications occurred in 47/236 patients (19.9%) and 54/653 stents (8.3%). Median follow up was 3.7 years (IQR 1.7-5.3 years). There was no difference in visceral stent complication rate between renal, SMA and coeliac arteries. Visceral stent complications were more frequent in more complex grafts compared to less complex grafts. Visceral stent complications were more frequent in uncovered stents compared to covered stents. Visceral stent-related endoleaks (type Ic and type IIIa) occurred exclusively around renal artery stents. The most common modes of failure with SMA stents were kinking and fracture, whereas with coeliac artery stents it was external crush.ConclusionVisceral stent complications after FEVAR are common and merit continued and close long-term surveillance. The mode of visceral stent failure varies across the vessels in which the stents are located

    Endovascular skills training and assessment

    Get PDF
    Objective: Evolving endovascular therapies have transformed the management of vascular disease. At the same time, the increasing use of non-invasive vascular imaging techniques has reduced the opportunities to gain the required basic wire and catheter handling skills by performing diagnostic catheterizations. This article reviews the evidence for alternative tools currently available for endovascular skills training and assessment. Methods: A Literature search was performed on pubmed using combinations of the following keywords; endovascular, skills, training, simulation, assessment and learning curve. Additional articles were retrieved from the reference lists of identified papers as well as discussion with experts in the arena of medical education. Results: Available alternatives to training on patients inclue synthetic models, anesthetized animals, human cadavers and virtual reality (VR) simulation. VR simulation is a useful tool enabling objective demonstration of improved skills performance both in simulated performance and in subsequent in-vivo performance. Assessment modalities reviewed include time action analysis, error analysis, global rating scales, procedure specific checklists and VR simulators. Assessment in training has been widely validated using VR simulation. Rating scales and checklists are presently the only assessment modalities that have demonstrated utility outside the training lab. Conclusion: The tools required for a structured proficiency based endovascular training curriculum are already available. Organization of training programs needs to evolve to make full use of modern simulation capability for technical and non-technical skills training

    Income deprivation and groin wound surgical site infection: cross-sectional analysis from the groin wound infection after vascular exposure multicenter cohort study

    No full text
    Background: Living in deprived areas is associated with poorer outcomes after certain vascular procedures and surgical site infection in other specialties. Our primary objective was to determine whether living in more income-deprived areas was associated with groin wound surgical site infection after arterial intervention. Secondary objectives were to determine whether living in more income-deprived areas was associated with mortality and clinical consequences of surgical site infection. Methods: Postal code data for patients from the United Kingdom who were included in the Groin Wound Infection after Vascular Exposure (GIVE) multicenter cohort study was used to determine income deprivation, based on index of multiple deprivation (IMD) data. Patients were divided into three IMD groups for descriptive analysis. Income deprivation score was integrated into the final multivariable model for predicting surgical site infection. Results: Only patients from England had sufficient postal code data, analysis included 772 groin incisions (624 patients from 22 centers). Surgical site infection occurred in 9.7% incisions (10.3% of patients). Surgical site infection was equivalent between income deprivation tertiles (tertile 1 = 9.5%; tertile 2 = 10.3%; tertile 3 = 8.6%; p = 0.828) as were the clinical consequences of surgical site infection and mortality. Income deprivation was not associated with surgical site infection in multivariable regression analysis (odds ratio [OR], 0.574; 95% confidence interval [CI], 0.038–8.747; p = 0.689). Median age at time of procedure was lower for patients living in more income-deprived areas (tertile 1 = 68 years; tertile 2 = 72 years; tertile 3 = 74 years; p < 0.001). Conclusions: We found no association between living in an income-deprived area and groin wound surgical site infection, clinical consequences of surgical site infection and mortality after arterial intervention. Patients living in more income-deprived areas presented for operative intervention at a younger age, with similar rates of comorbidities to patients living in less income-deprived areas. Groin wound surgical site infection (SSI) after arterial surgery is common [1], and research into reducing SSIs in vascular surgery is recognized as a priority by both clinicians and patient/caregiver representatives [2]. Despite the substantial potential morbidity and mortality of these SSIs [3,4], the available evidence relating to contributory factors is largely historic or reliant on retrospective data [5–7]. Further research on the epidemiology of SSI in this patient group is needed to allow better risk stratification, improve pre-operative discussions of risk with patients, and to guide targeted SSI prevention strategies that often include expensive prophylactic interventions [8]. However, little is currently known about the impact of socioeconomic characteristics on groin wound SSIs in this population. Socioeconomic deprivation is linked to health [9], and lifestyle-influenced cardiovascular diseases are more prevalent in more deprived areas [10]. Higher rates of unhealthy lifestyles (smoking, poor diet, and lack of physical exercise) in deprived areas are postulated to cause higher rates of cardiovascular risk increasing comorbidities, such as obesity and hyperlipidemia [10–12]. Several cardiovascular risk factors (e.g., smoking, body mass index, and diabetes mellitus), and peripheral arterial disease itself, are well recognized risk factors for SSI [13–16]. The association between socioeconomic deprivation and SSIs has previously been demonstrated in orthopedic surgery, cardiac surgery, and general surgery [17–19]. It is currently unknown whether living in an income-deprived area is associated with groin wound SSIs after arterial intervention. It was recently demonstrated in a large registry study in the United Kingdom, that outcomes following endovascular intervention for occlusive peripheral arterial disease were worse for patients living in deprived areas [20]. To the best of our knowledge, this aspect of outcomes after arterial intervention through a groin incision has not been investigated. Furthermore, studies demonstrating higher prevalence of cardiovascular disease risk factors in more deprived areas are now mostly historic and have not specifically investigated those presenting for arterial intervention through a groin incision for demographic differences in relation to deprivation [9–12]. Updated, prospective evidence is required to determine whether health inequalities persist for such patients today. Our primary objective was to determine whether residing in a more income-deprived area was associated with a higher risk of groin wound SSI after arterial intervention, by analyzing a subset of patients enrolled in the Groin wound Infection after Vascular Exposure (GIVE) multicenter cohort study [1,21]. Secondary objectives were to determine whether living in more income-deprived areas was associated with 30-day mortality and the clinical sequelae of SSI, and whether patients living in more income-deprived areas differed in terms of demographics and comorbidities compared with patients from less income-deprived areas
    corecore