325 research outputs found

    Monte Carlo energy and variance minimization techniques for optimizing many-body wave functions

    Full text link
    We investigate Monte Carlo energy and variance minimization techniques for optimizing many-body wave functions. Several variants of the basic techniques are studied, including limiting the variations in the weighting factors which arise in correlated sampling estimations of the energy and its variance. We investigate the numerical stability of the techniques and identify two reasons why variance minimization exhibits superior numerical stability to energy minimization. The characteristics of each method are studied using a non-interacting 64-electron model of crystalline silicon. While our main interest is in solid state systems, the issues investigated are relevant to Monte Carlo studies of atoms, molecules and solids. We identify a robust and efficient variance minimization scheme for optimizing wave functions for large systems.Comment: 14 pages, including 7 figures. To appear in Phys. Rev. B. For related publications see http://www.tcm.phy.cam.ac.uk/Publications/many_body.htm

    Hydrogen/silicon complexes in silicon from computational searches

    Full text link
    Defects in crystalline silicon consisting of a silicon self-interstitial atom and one, two, three, or four hydrogen atoms are studied within density-functional theory (DFT). We search for low-energy defects by starting from an ensemble of structures in which the atomic positions in the defect region have been randomized. We then relax each structure to a minimum in the energy. We find a new defect consisting of a self-interstitial and one hydrogen atom (denoted by {I,H}) which has a higher symmetry and a lower energy than previously reported structures. We recover the {I,H_2} defect found in previous studies and confirm that it is the most stable such defect. Our best {I,H_3} defect has a slightly different structure and lower energy than the one previously reported, and our lowest energy {I,H_4} defect is different to those of previous studies.Comment: 7 pages, 8 figure

    A Geometric Formulation of Quantum Stress Fields

    Full text link
    We present a derivation of the stress field for an interacting quantum system within the framework of local density functional theory. The formulation is geometric in nature and exploits the relationship between the strain tensor field and Riemannian metric tensor field. Within this formulation, we demonstrate that the stress field is unique up to a single ambiguous parameter. The ambiguity is due to the non-unique dependence of the kinetic energy on the metric tensor. To illustrate this formalism, we compute the pressure field for two phases of solid molecular hydrogen. Furthermore, we demonstrate that qualitative results obtained by interpreting the hydrogen pressure field are not influenced by the presence of the kinetic ambiguity.Comment: 22 pages, 2 figures. Submitted to Physical Review B. This paper supersedes cond-mat/000627

    Diffusion Quantum Monte Carlo Calculations of Excited States of Silicon

    Full text link
    The band structure of silicon is calculated at the Gamma, X, and L wave vectors using diffusion quantum Monte Carlo methods. Excited states are formed by promoting an electron from the valence band into the conduction band. We obtain good agreement with experiment for states around the gap region and demonstrate that the method works equally well for direct and indirect excitations, and that one can calculate many excited states at each wave vector. This work establishes the fixed-node DMC approach as an accurate method for calculating the energies of low lying excitations in solids.Comment: 5 pages, 1 figur

    Elasticity of entangled polymer loops: Olympic gels

    Full text link
    In this note we present a scaling theory for the elasticity of olympic gels, i.e., gels where the elasticity is a consequence of topology only. It is shown that two deformation regimes exist. The first is the non affine deformation regime where the free energy scales linear with the deformation. In the large (affine) deformation regime the free energy is shown to scale as Fλ5/2F \propto \lambda^{5/2} where λ\lambda is the deformation ratio. Thus a highly non Hookian stress - strain relation is predicted.Comment: latex, no figures, accepted in PRE Rapid Communicatio

    Optical spectra and exchange-correlation effects in molecular crystals

    Full text link
    We report first-principles GW-Bethe Salpeter Equation and Quantum Monte Carlo calculations of the optical and electronic properties of molecular and crystalline rubrene (C42_{42}H28_{28}). Many-body effects dominate the optical spectrum and quasi-particle gap of molecular crystals. We interpret the observed yellow-green photoluminescence in rubrene microcrystals as a result of the formation of intermolecular, charge-transfer spin-singlet excitons. In contrast, spin-triplet excitons are localized and intramolecular with a predicted phosphorescence at the red end of the optical spectrum. We find that the exchange energy plays a fundamental role in raising the energy of intramolecular spin-singlet excitons above the intermolecular ones. Exciton binding energies are predicted to be around 0.5 eV (spin singlet) to 1 eV (spin triplet). The calculated electronic gap is 2.8 eV. The theoretical absorption spectrum agrees very well with recent ellipsometry data.Comment: 4 pages, 4 figure

    Excitons in T-shaped quantum wires

    Full text link
    We calculate energies, oscillator strengths for radiative recombination, and two-particle wave functions for the ground state exciton and around 100 excited states in a T-shaped quantum wire. We include the single-particle potential and the Coulomb interaction between the electron and hole on an equal footing, and perform exact diagonalisation of the two-particle problem within a finite basis set. We calculate spectra for all of the experimentally studied cases of T-shaped wires including symmetric and asymmetric GaAs/Alx_{x}Ga1x_{1-x}As and Iny_{y}Ga1y_{1-y}As/Alx_{x}Ga1x_{1-x}As structures. We study in detail the shape of the wave functions to gain insight into the nature of the various states for selected symmetric and asymmetric wires in which laser emission has been experimentally observed. We also calculate the binding energy of the ground state exciton and the confinement energy of the 1D quantum-wire-exciton state with respect to the 2D quantum-well exciton for a wide range of structures, varying the well width and the Al molar fraction xx. We find that the largest binding energy of any wire constructed to date is 16.5 meV. We also notice that in asymmetric structures, the confinement energy is enhanced with respect to the symmetric forms with comparable parameters but the binding energy of the exciton is then lower than in the symmetric structures. For GaAs/Alx_{x}Ga1x_{1-x}As wires we obtain an upper limit for the binding energy of around 25 meV in a 10 {\AA} wide GaAs/AlAs structure which suggests that other materials must be explored in order to achieve room temperature applications. There are some indications that Iny_{y}Ga1y_{1-y}As/Alx_{x}Ga1x_{1-x}As might be a good candidate.Comment: 20 pages, 10 figures, uses RevTeX and psfig, submitted to Physical Review

    Interpolated wave functions for nonadiabatic simulations with the fixed-node quantum Monte Carlo method

    Full text link
    Simulating nonadiabatic effects with many-body wave function approaches is an open field with many challenges. Recent interest has been driven by new algorithmic developments and improved theoretical understanding of properties unique to electron-ion wave functions. Fixed-node diffusion Monte Caro is one technique that has shown promising results for simulating electron-ion systems. In particular, we focus on the CH molecule for which previous results suggested a relatively significant contribution to the energy from nonadiabatic effects. We propose a new wave function ansatz for diatomic systems which involves interpolating the determinant coefficients calculated from configuration interaction methods. We find this to be an improvement beyond previous wave function forms that have been considered. The calculated nonadiabatic contribution to the energy in the CH molecule is reduced compared to our previous results, but still remains the largest among the molecules under consideration.Comment: 7 pages, 3 figure

    Muonium as a hydrogen analogue in silicon and germanium; quantum effects and hyperfine parameters

    Full text link
    We report a first-principles theoretical study of hyperfine interactions, zero-point effects and defect energetics of muonium and hydrogen impurities in silicon and germanium. The spin-polarized density functional method is used, with the crystalline orbitals expanded in all-electron Gaussian basis sets. The behaviour of hydrogen and muonium impurities at both the tetrahedral and bond-centred sites is investigated within a supercell approximation. To describe the zero-point motion of the impurities, a double adiabatic approximation is employed in which the electron, muon/proton and host lattice degrees of freedom are decoupled. Within this approximation the relaxation of the atoms of the host lattice may differ for the muon and proton, although in practice the difference is found to be slight. With the inclusion of zero-point motion the tetrahedral site is energetically preferred over the bond-centred site in both silicon and germanium. The hyperfine and superhyperfine parameters, calculated as averages over the motion of the muon, agree reasonably well with the available data from muon spin resonance experiments.Comment: 20 pages, including 9 figures. To appear in Phys. Rev.
    corecore