3 research outputs found

    Proper genomic profiling of (BRCA1-mutated) basal-like breast carcinomas requires prior removal of tumor infiltrating lymphocytes

    Get PDF
    BRCA1-mutated breast carcinomas may have distinct biological features, suggesting the involvement of specific oncogenic pathways in tumor development. The identification of genomic aberrations characteristic for BRCA1-mutated breast carcinomas could lead to a better understanding of BRCA1-associated oncogenic events and could prove valuable in clinical testing for BRCA1-involvement in patients. Methods: For this purpose, genomic and gene expression profiles of basal-like BRCA1-mutated breast tumors (n=27) were compared with basal-like familial BRCAX (non-. BRCA1/. 2/. CHEK2*1100delC) tumors (n=14) in a familial cohort of 120 breast carcinomas. Results: Genome wide copy number profiles of the BRCA1-mutated breast carcinomas in our data appeared heterogeneous. Gene expression analyses identifi

    Recommendations for the clinical interpretation and reporting of copy number gains using gene panel NGS analysis in routine diagnostics

    Get PDF
    Next-generation sequencing (NGS) panel analysis on DNA from formalin-fixed paraffin-embedded (FFPE) tissue is increasingly used to also identify actionable copy number gains (gene amplifications) in addition to sequence variants. While guidelines for the reporting of sequence variants are available, guidance with respect to reporting copy number gains from gene-panel NGS data is limited. Here, we report on Dutch consensus recommendations obtained in the context of the national Predictive Analysis for THerapy (PATH) project, which aims to optimize and harmonize routine diagnostics in molecular pathology. We briefly d

    HER2 gene amplification in patients with breast cancer with equivocal IHC results

    No full text
    Aims: Equivocal human epidermal growth factor receptor 2 protein (HER2) (2+) immunohistochemistry (IHC) is subject to significant interobserver variation and poses a challenge in obtaining a definitive positive or negative test result. This equivocal test result group accounts for approximately 15% of all tumours, and for optimal guidance of HER2 targeted therapy, a further analysis of quantification of gene copy number and amplification status is needed for patients with early or metastatic breast cancer. Methods: 553 breast-cancer specimens with equivocal HER2 IHC(2+) test results were collected and subsequently centrally retested by chromogenic in situ hybridisation (CISH), and HER2 gene copy numbers per tumour cell nucleus were determined. Results: Using CISH, 77 of 553 equivocal HER2 IHC(2+) test result cases (13.9% of total) showed high levels of HER2 gene amplification (≥10.0 gene copies per nucleus), and 41 of 553 (7.4% of total) showed low-level HER2 gene amplification (6.0-9.9 gene copies per nucleus). In 73.6% of cases, no amplification of the HER2 gene was shown, and in only 4.9% of cases was an equivocal test result by CISH observed (4.0-5.9 gene copies per nucleus). Conclusions: Testing by CISH of all equivocal HER2 IHC (2+) test result provides a definitive guidance in HER2 targeted therapy in 95.1% of cases. A significant proportion (21.3%) of patients with equivocal IHC(2+) test results show amplification of the HER2 gene
    corecore