20 research outputs found

    Plasma Membrane Temperature Gradients and Multiple Cell Permeabilization Induced by Low Peak Power Density Femtosecond Lasers

    Get PDF
    Calculations indicate that selectively heating the extracellular media induces membrane temperature gradients that combine with electric fields and a temperature-induced reduction in the electro- permeabilization threshold to potentially facilitate exogenous molecular delivery. Experiments by a wide-field, pulsed femtosecond laser with peak power density far below typical single cell optical de- livery systems confirmed this hypothesis. Operating this laser in continuous wave mode at the same average power permeabilized many fewer cells, suggesting that bulk heating alone is insufficient and temperature gradients are crucial for permeabilization. This work suggests promising opportunities for a high throughput, low cost, contactless method for laser mediated exogenous molecule delivery without the complex optics of typical single cell optoinjection, for potential integration into microscope imaging and microfluidic systems

    Infrared Laser-Based Single Cell Permeabilization by Plasma Membrane Temperature Gradients

    No full text
    Single cell microinjection provides precise tuning of the volume and timing of delivery into the treated cells; however, it also introduces workflow complexity that requires highly skilled operators and specialized equipment. Laser-based microinjection provides an alternative method for targeting a single cell using a common laser and a workflow that may be readily standardized. This paper presents experiments using a 1550 nm, 100 fs pulse duration laser with a repetition rate of 20 ns for laser-based microinjection and calculations of the hypothesized physical mechanism responsible for the experimentally observed permeabilization. Chinese Hamster Ovarian (CHO) cells exposed to this laser underwent propidium iodide uptake, demonstrating the potential for selective cell permeabilization. The agreement between the experimental conditions and the electropermeabilization threshold based on estimated changes in the transmembrane potential induced by a laser-induced plasma membrane temperature gradient, even without accounting for enhancement due to traditional electroporation, strengthens the hypothesis of this mechanism for the experimental observations. Compared to standard 800 nm lasers, 1550 nm fs lasers may ultimately provide a lower cost microinjection method that readily interfaces with a microscope and is agnostic to operator skill, while inducing fewer deleterious effects (e.g., temperature rise, shockwaves, and cavitation bubbles)

    Plasma membrane temperature gradients and multiple cell permeabilization induced by low peak power density femtosecond lasers

    Get PDF
    Calculations indicate that selectively heating the extracellular media induces membrane temperature gradients that combine with electric fields and a temperature-induced reduction in the electropermeabilization threshold to potentially facilitate exogenous molecular delivery. Experiments by a wide-field, pulsed femtosecond laser with peak power density far below typical single cell optical delivery systems confirmed this hypothesis. Operating this laser in continuous wave mode at the same average power permeabilized many fewer cells, suggesting that bulk heating alone is insufficient and temperature gradients are crucial for permeabilization. This work suggests promising opportunities for a high throughput, low cost, contactless method for laser mediated exogenous molecule delivery without the complex optics of typical single cell optoinjection, for potential integration into microscope imaging and microfluidic systems

    Forward and small-x physics at CMS

    No full text
    A review of experimental measurements from the Compact Muon Solenoid Experiment at the LHC Run 1 is presented. A particular focus is given to jet results in the central and forward regions, and to measurements sensitive to the behaviour of small-x gluons inside the proton and to double parton scattering

    Solid state pulse sharpening–yellow trace, vs. voltage pulse without pulse sharpening–blue trace.

    No full text
    <p>The pink trace is the current waveform for a sharpened pulse (whole blood in a 2 mm cuvette was used as a load). The pulse duration of the sharpened pulse is 500 ns with a peak voltage of 3.58 kV and peak current of 358 A.</p
    corecore