52 research outputs found

    Different polyubiquitinated bodies in human dendritic cells: IL-4 causes PaCS during differentiation while LPS or IFNα induces DALIS during maturation

    Get PDF
    Two types of polyubiquitin-reactive cytoplasmic bodies, particulate cytoplasmic structures (PaCS) and dendritic cell (DC) aggresome-like induced structures (DALIS), were analyzed by electron microscopy, immunocytochemistry, immunoblotting, and flow cytometry in DC obtained from human blood monocytes incubated with GM-CSF plus IL-4 (IL4-DC), GM-CSF plus IFNα (IFN-DC), or GM-CSF alone (GM-DC), with or without LPS maturation. PaCS developed as monomorphic aggregates of proteasome-reactive barrel-like particles only in ribosomes-rich cytoplasmic areas of differentiating IL4-DC. In contrast, DALIS formed as vesicular bodies storing K63-linked ubiquitinated proteins by coalescence of increased endosomal structures, in IFN-DC or after LPS maturation of GM-DC. DALIS-forming cells showed incomplete morphological and functional DC-type differentiation when compared to PaCS-forming IL4-DC. PaCS and DALIS may have different function as well as different origin and cytochemistry. DALIS may be a transient accumulation site of potentially antigenic polyubiquitinated proteins during their processing and presentation. PaCS are found under physiologic or pathologic conditions associated with increased/deranged protein synthesis and increased ubiquitin– proteasome activity. Given its high heat-shock protein content PaCS may work as a quality control structure for newly synthesized, cytosolic proteins. This comparative analysis suggests that PaCS and DALIS have distinctive roles in DC

    Proteasome Particle-Rich Structures Are Widely Present in Human Epithelial Neoplasms: Correlative Light, Confocal and Electron Microscopy Study

    Get PDF
    A novel cytoplasmic structure has been recently characterized by confocal and electron microscopy in H. pylori-infected human gastric epithelium, as an accumulation of barrel-like proteasome reactive particles colocalized with polyubiquitinated proteins, H. pylori toxins and the NOD1 receptor. This proteasome particle-rich cytoplasmic structure (PaCS), a sort of focal proteasome hyperplasia, was also detected in dysplastic cells and was found to be enriched in SHP2 and ERK proteins, known to play a role in H. pylori-mediated gastric carcinogenesis. However, no information is available on its occurrence in neoplastic growths. In this study, surgical specimens of gastric cancer and various other human epithelial neoplasms have been investigated for PaCSs by light, confocal and electron microscopy including correlative confocal and electron microscopy (CCEM). PaCSs were detected in gastric cohesive, pulmonary large cell and bronchioloalveolar, thyroid papillary, parotid gland, hepatocellular, ovarian serous papillary, uterine cervix and colon adenocarcinomas, as well as in pancreatic serous microcystic adenoma. H. pylori bodies, their virulence factors (VacA, CagA, urease, and outer membrane proteins) and the NOD1 bacterial proteoglycan receptor were selectively concentrated inside gastric cancer PaCSs, but not in PaCSs from other neoplasms which did, however, retain proteasome and polyubiquitinated proteins reactivity. No evidence of actual microbial infection was obtained in most PaCS-positive neoplasms, except for H. pylori in gastric cancer and capsulated bacteria in a colon cancer case. Particle lysis and loss of proteasome distinctive immunoreactivities were seen in some tumour cell PaCSs, possibly ending in sequestosomes or autophagic bodies. It is concluded that PaCSs are widely represented in human neoplasms and that both non-infectious and infectious factors activating the ubiquitin-proteasome system are likely to be involved in their origin. PaCS detection might help clarify the role of the ubiquitin-proteasome system in carcinogenesis

    Ramucirumab plus docetaxel versus placebo plus docetaxel in patients with locally advanced or metastatic urothelial carcinoma after platinum-based therapy (RANGE): a randomised, double-blind, phase 3 trial

    Get PDF
    Few treatments with a distinct mechanism of action are available for patients with platinum-refractory advanced or metastatic urothelial carcinoma. We assessed the efficacy and safety of treatment with docetaxel plus either ramucirumab-a human IgG1 VEGFR-2 antagonist-or placebo in this patient population

    CagA effector protein in Helicobacter pylori-infected human gastric epithelium in vivo: from bacterial core and adhesion/injection clusters to host cell proteasome-rich cytosol.

    No full text
    A key role in the carcinogenic action of Helicobacter pylori is played by the eector protein CagA, the first identified oncoprotein of the bacterial world. However, the present knowledge in regard to the bacterial injection of CagA into epithelial cells (through a type IV secretion system) and its intracellular fate is based primarily on experimental studies in vitro. Our study was aimed to investigate, in H. pylori-infected human gastric epithelium, CagA delivery and intracellular distribution in order to identify any in vivo counterpart of the cell injection mechanism described in vitro and any intracellular cytoplasmic site of preferential CagA distribution, thus shedding light on the natural history of CagA in vivo. By transmission electron microscopy and ultrastructural immunocytochemistry (which combine precise molecule localization with detailed analysis of bacterial-host cell interaction and epithelial cell ultrastructure), we investigated endoscopic biopsies of gastric antrum from H. pylori-infected dyspeptic patients. Our findings provide support for CagA direct injection into gastric epithelial cells at bacterial adhesion sites located on the lateral plasma membrane and for its cytosolic intracellular distribution with selective concentration inside peculiar proteasome-rich areas, which might be site not only of CagA degradation but also of CagA-promoted crucial events in gastric carcinogenesis

    In vivo accumulation of Helicobacter pylori products, NOD1, ubiquitinated proteins and proteasome in a novel cytoplasmic structure.

    Get PDF
    Cell internalization and intracellular fate of H. pylori products/virulence factors in vivo by human gastric epithelium, the main target of H. pylori-induced pathologies (i.e., peptic ulcer and cancer), are still largely unknown. Investigating gastric endoscopic biopsies from dyspeptic patients by means of ultrastructural immunocytochemistry, here we show that, in human superficial-foveolar epithelium and its metaplastic or dysplastic foci, H. pylori virulence factors accumulated in a discrete cytoplasmic structure characterized by 13-nm-thick cylindrical particles of regular punctate-linear substructure resembling the proteasome complex in size and structure. Inside this particle-rich cytoplasmic structure (PaCS) we observed colocalization of VacA, CagA, urease and outer membrane proteins with NOD1 receptor, ubiquitin-activating enzyme E1, polyubiquitinated proteins, proteasome components and potentially oncogenic proteins like SHP2 and ERKs in human gastric epithelium. By means of electron and confocal microscopy, we demonstrate that the in vivo findings were reproduced in vitro by incubating human epithelial cell lines with H. pylori products/virulence factors. PaCSs differed from VacA-induced vacuoles, phagosomes, aggresomes or related bodies. Our data suggest that PaCS is a novel, proteasome-enriched structure arising in ribosome-rich cytoplasm at sites of H. pylori products accumulation. As a site of selective concentration of bacterial virulence factors, the ubiquitin-proteasome system and interactive proteins, PaCS is likely to modulate immune-inflammatory and proliferative responses of the gastric epithelium of potential pathologic relevance

    Proteasome-Rich PaCS as an Oncofetal UPS Structure Handling Cytosolic Polyubiquitinated Proteins. In Vivo Occurrence, in Vitro Induction, and Biological Role

    No full text
    In this article, we outline and discuss available information on the cellular site and mechanism of proteasome interaction with cytosolic polyubiquitinated proteins and heat-shock molecules. The particulate cytoplasmic structure (PaCS) formed by barrel-like particles, closely reproducing in vivo the high-resolution structure of 26S proteasome as isolated in vitro, has been detected in a variety of fetal and neoplastic cells, from living tissue or cultured cell lines. Specific trophic factors and interleukins were found to induce PaCS during in vitro differentiation of dendritic, natural killer (NK), or megakaryoblastic cells, apparently through activation of the MAPK-ERK pathway. Direct interaction of CagA bacterial oncoprotein with proteasome was shown inside the PaCSs of a Helicobacter pylori-infected gastric epithelium, a finding suggesting a role for PaCS in CagA-mediated gastric carcinogenesis. PaCS dissolution and autophagy were seen after withdrawal of inducing factors. PaCS-filled cell blebs and ectosomes were found in some cells and may represent a potential intercellular discharge and transport system of polyubiquitinated antigenic proteins. PaCS differs substantially from the inclusion bodies, sequestosomes, and aggresomes reported in proteinopathies like Huntington or Parkinson diseases, which usually lack PaCS. The latter seems more linked to conditions of increased cell proliferation/differentiation, implying an increased functional demand to the ubiquitin–proteasome system

    In vivo accumulation of Helicobacter pylori products, NOD1, ubiquitinated proteins and proteasome in a novel cytoplasmic structure.

    Get PDF
    Cell internalization and intracellular fate of H. pylori products/virulence factors in vivo by human gastric epithelium, the main target of H. pylori-induced pathologies (i.e., peptic ulcer and cancer), are still largely unknown. Investigating gastric endoscopic biopsies from dyspeptic patients by means of ultrastructural immunocytochemistry, here we show that, in human superficial-foveolar epithelium and its metaplastic or dysplastic foci, H. pylori virulence factors accumulated in a discrete cytoplasmic structure characterized by 13-nm-thick cylindrical particles of regular punctate-linear substructure resembling the proteasome complex in size and structure. Inside this particle-rich cytoplasmic structure (PaCS) we observed colocalization of VacA, CagA, urease and outer membrane proteins with NOD1 receptor, ubiquitin-activating enzyme E1, polyubiquitinated proteins, proteasome components and potentially oncogenic proteins like SHP2 and ERKs in human gastric epithelium. By means of electron and confocal microscopy, we demonstrate that the in vivo findings were reproduced in vitro by incubating human epithelial cell lines with H. pylori products/virulence factors. PaCSs differed from VacA-induced vacuoles, phagosomes, aggresomes or related bodies. Our data suggest that PaCS is a novel, proteasome-enriched structure arising in ribosome-rich cytoplasm at sites of H. pylori products accumulation. As a site of selective concentration of bacterial virulence factors, the ubiquitin-proteasome system and interactive proteins, PaCS is likely to modulate immune-inflammatory and proliferative responses of the gastric epithelium of potential pathologic relevance

    Evidence for transepithelial dendritic cells in human H. pylori active gastritis.

    No full text
    Background: Despite extensive experimental investigation stressing the importance of bacterial interaction with dendritic cells (DCs), evidence regarding direct interaction of H. pylori or its virulence products with DCs in the human gastric mucosa is lacking. Methods: Human gastric mucosa biopsies, with or without H. pylori infection and active inflammation, were investigated at light and electron microscopy level with immunocytochemical tests for bacterial products (VacA, urease, outer membrane proteins) and DC markers (DC-SIGN, CD11c, CD83) or with the DC-labeling ZnI2-OsO4 technique. Parallel tests with cultured DCs were carried out. Results: Cells reproducing ultrastructural and cytochemical patterns of DCs were detected in the lamina propria and epithelium of heavily infected and inflamed (but not of normal or moderately inflamed) mucosa, where DC luminal endings directly contact H. pylori and take up their virulence products. Cytotoxic changes (mitochondrial swelling, cytoplasmic vacuolation, autophagy) were observed in intraepithelial DCs and reproduced in cultured DCs incubated with H. pylori broth culture filtrates to obtain intracellular accumulation of VacA and urease. Granulocytes were also seen to contact and heavily phagocytose luminal H. pylori, while macrophages remained confined to basal epithelium, though taking up bacteria and bacterial products. Conclusion: Human DCs can enter H. pylori-infected gastric epithelium, in association with other innate immunity cells, to take up bacteria and their virulence products. This process is likely to be important for bacterial sensing and pertinent immune response, however it may also generate DC cytotoxic changes potentially hampering their function
    • …
    corecore