224 research outputs found

    Impact of an Extreme Storm Event on River Corridor Bank Erosion and Phosphorus Mobilization in a Mountainous Watershed in the Northeastern United States

    Get PDF
    Movement of sediment, and associated phosphorus, from stream banks to freshwater lakes is predicted to increase with greater frequency of extreme precipitation events. This higher phosphorus load may accelerate harmful algal blooms in affected water bodies, such as Lake Champlain in Vermont, New York, and Québec. In the Mad River, a subwatershed in central Vermont\u27s Lake Champlain Basin, extreme flooding from Tropical Storm Irene in 2011 caused extensive erosion. We measured stream channel change along the main stem between 2008 and 2011 by digitizing available prestorm and poststorm aerial imagery. Soils were sampled post Irene at six active stream erosion sites, using an experimental design to measure differences in soil texture and phosphorus both with depth (90 cm) and distance from the stream. In addition to total phosphorus (TP), we determined bioavailable (soil test) phosphorus (STP) and the degree of phosphorus saturation (DPS). The six sites represented a 0.87-km length of stream bank that contributed an estimated 17.6 × 10 3 Mg of sediment and 15.8 Mg of TP, roughly the same as average annual watershed export estimates. At four sites, the STP and DPS were low and suggested little potential for short-term phosphorus release. At two agricultural sites where the lateral extent of erosion was high, imagery showed a clear loss of well-established riparian buffer. Present-day near-stream soils were elevated in STP and DPS. An increase in these extreme events will clearly increase sediment loads. There will also be increasing concentration of sediment phosphorus if stream banks continue to erode into actively managed agricultural fields

    Risk Assessment of Erosion from Concentrated Flow on Rangelands Using Overland Flow Distribution and Shear Stress Partitioning

    Get PDF
    Erosion rates of overland flow on rangelands tend to be relatively low, but under certain conditions where flow is concentrated, soil loss can be significant. Therefore, a rangeland site can be highly vulnerable to soil erosion where overland flow is likely to concentrate and exert high shear stress on soil grains. This concept is commonly applied in cropland and wildland soil erosion modeling using predictions of flow effective shear stress (shear stress applied on soil grains). However, historical approaches to partition shear stress in erosion models are computationally complex and require extensive parameterization. Furthermore, most models are not capable of predicting the conditions in which concentrated flow occurs on rangelands. In this study, we investigated the rangelands conditions at which overland flow is more likely to become concentrated and developed equations for partitioning the shear stress of concentrated flow on rangelands. A logistic equation was developed to estimate the probability of overland flow to become concentrated. Total shear stress of rangeland overland flow was partitioned into components exerted on soil, vegetation, and rock cover using field experimental data. In addition, we investigated the vegetation cover limit at which the effective shear stress component is substantially reduced, limiting the erosion rate. The results from the partitioning equations show that shear stress exerted on soil grains was relatively small in sheet flow. Shear stress exerted on soil grains in concentrated flow was significantly higher when bare soil exceeded 60% of the total surface area but decreased significantly when the bare soil area was less than 25% or when the plant base cover exceeded 20%. These percentages could be used as relative measures of hydrologic recovery for disturbed rangelands or as triggers that indicate a site is crossing a threshold beyond which soil erosion might accelerate due to the high effective shear stress

    Concentrated Flow Erodibility for Physically Based Erosion Models: Temporal Variability in Disturbed and Undisturbed Rangelands

    Get PDF
    Current physically based overland flow erosion models for rangeland application do not separate disturbed and undisturbed conditions in modeling concentrated flow erosion. In this study, concentrated flow simulations on disturbed and undisturbed rangelands were used to estimate the erodibility and to evaluate the performance of linear and power law equations that describe the relationship between erosion rate and several hydraulic parameters. None of the hydraulic parameters consistently predicted the detachment capacity well for all sites, however, stream power performed better than most of other hydraulic parameters. Using power law functions did not improve the detachment relation with respect to that of the linear function. Concentrated flow erodibility increased significantly when a site was exposed to a disturbance such as fire or tree encroachment into sagebrush steppe. This study showed that burning increases erosion by amplifying the erosive power of overland flow through removing obstacles and by changing the soil properties affecting erodibility itself. However, the magnitude of fire impact varied among sites due to inherent differences in site characteristics and variability in burn severity. In most cases we observed concentrated flow erodibility had a high value at overland flow initiation and then started to decline with time due to reduction of sediment availability. Thus we developed an empirical function to predict erodibility variation within a runoff event as a function of cumulative unit discharge. Empirical equations were also developed to predict erodibility variation with time postdisturbance as a function of readily available vegetation cover and surface soil texture data

    Developing a Parameterization Approach for Soil Erodibility for the Rangeland Hydrology and Erosion Model (RHEM)

    Get PDF
    Soil erodibility is a key factor for estimating soil erosion using physically based models. In this study, a new parameterization approach for estimating erodibility was developed for the Rangeland Hydrology and Erosion Model (RHEM). The approach uses empirical equations that were developed by applying piecewise regression analysis to predict the differences of erodibility before and after disturbance (i.e., wildfire, prescribed fire, and tree encroachment) and across a wide range of soil textures as a function of vegetation cover and surface slope angle. The approach combines rain splash, sheet flow, and concentrated flow erodibilities into a single parameter for modeling erodibility in most cases. We evaluated the new approach for sites representing different degrees of disturbance associated with burning and tree encroachment. Our results show that the new erodibility approach in RHEM predicts erosion at the plot scale with a satisfactory range of error in all cases. The new approach extends the applications of RHEM to a greater scope of landscapes and soil texture

    Atrial septum fat deposition and atrial anatomy assessed by cardiac magnetic resonance: relationship to atrial electrophysiology

    Get PDF
    To assess the prevalence of fat deposition in the atrial septum with and its relationship with 12-lead electrocardiogram (ECG) atrial parameters (PR interval, P wave duration) and the presence of atrial fibrillation

    Incorporating Hydrologic Data and Ecohydrologic Relationships into Ecological Site Descriptions

    Get PDF
    The purpose of this paper is to recommend a framework and methodology for incorporating hydrologic data and ecohydrologic relationships in Ecological Site Descriptions (ESDs) and thereby enhance the utility of ESDs for assessing rangelands and guiding resilience-based management strategies. Resilience-based strategies assess and manage ecological state dynamics that affect state vulnerability and, therefore, provide opportunities to adapt management. Many rangelands are spatially heterogeneous or sparsely vegetated where the vegetation structure strongly influences infiltration and soil retention. Infiltration and soil retention further influence soil water recharge, nutrient availability, and overall plant productivity. These key ecohydrologic relationships govern the ecologic resilience of the various states and community phases on many rangeland ecological sites (ESs) and are strongly affected by management practices, land use, and disturbances. However, ecohydrologic data and relationships are often missing in ESDs and state-and-transition models (STMs). To address this void, we used literature to determine the data required for inclusion of key ecohydrologic feedbacks into ESDs, developed a framework and methodology for data integration within the current ESD structure, and applied the framework to a select ES for demonstrative purposes. We also evaluated the utility of the Rangeland Hydrology and Erosion Model (RHEM) for assessment and enhancement of ESDs based in part on hydrologic function. We present the framework as a broadly applicable methodology for integrating ecohydrologic relationships and feedbacks into ESDs and resilience-based management strategies. Our proposed framework increases the utility of ESDs to assess rangelands, target conservation and restoration practices, and predict ecosystem responses to management. The integration of RHEM technology and our suggested framework on ecohydrologic relations expands the ecological foundation of the overall ESD concept for rangeland management and is well aligned with resilience-based, adaptive management of US rangelands. The proposed enhancement of ESDs will improve communication between private land owners and resource managers and researchers across multiple disciplines in the field of rangeland management

    Restitution analysis of alternans and its relationship to arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts

    Get PDF
    Alternans and arrhythmogenicity were studied in hypokalaemic (3.0 mM K+) Langendorff-perfused murine hearts paced at high rates. Epicardial and endocardial monophasic action potentials were recorded and durations quantified at 90% repolarization. Alternans and arrhythmia occurred in hypokalaemic, but not normokalaemic (5.2 mM K+) hearts (P < 0.01): this was prevented by treatment with lidocaine (10 μM, P < 0.01). Fourier analysis then confirmed transition from monomorphic to polymorphic waveforms for the first time in the murine heart. Alternans and arrhythmia were associated with increases in the slopes of restitution curves, obtained for the first time in the murine heart, while the anti-arrhythmic effect of lidocaine was associated with decreased slopes. Thus, hypokalaemia significantly increased (P < 0.05) maximal gradients (from 0.55 ± 0.14 to 2.35 ± 0.67 in the epicardium and from 0.67 ± 0.13 to 1.87 ± 0.28 in the endocardium) and critical diastolic intervals (DIs) at which gradients equalled unity (from −2.14 ± 0.52 ms to 50.93 ± 14.45 ms in the epicardium and from 8.14 ± 1.49 ms to 44.64 ± 5 ms in the endocardium). While treatment of normokalaemic hearts with lidocaine had no significant effect (P > 0.05) on either maximal gradients (0.78 ± 0.27 in the epicardium and 0.83 ± 0.45 in the endocardium) or critical DIs (6.06 ± 2.10 ms and 7.04 ± 3.82 ms in the endocardium), treatment of hypokalaemic hearts with lidocaine reduced (P < 0.05) both these parameters (1.05 ± 0.30 in the epicardium and 0.89 ± 0.36 in the endocardium and 30.38 ± 8.88 ms in the epicardium and 31.65 ± 4.78 ms in the endocardium, respectively). We thus demonstrate that alternans contributes a dynamic component to arrhythmic substrate during hypokalaemia, that restitution may furnish an underlying mechanism and that these phenomena are abolished by lidocaine, both recapitulating and clarifying clinical findings

    Presynaptic External Calcium Signaling Involves the Calcium-Sensing Receptor in Neocortical Nerve Terminals

    Get PDF
    Nerve terminal invasion by an axonal spike activates voltage-gated channels, triggering calcium entry, vesicle fusion, and release of neurotransmitter. Ion channels activated at the terminal shape the presynaptic spike and so regulate the magnitude and duration of calcium entry. Consequently characterization of the functional properties of ion channels at nerve terminals is crucial to understand the regulation of transmitter release. Direct recordings from small neocortical nerve terminals have revealed that external [Ca(2+)] ([Ca(2+)](o)) indirectly regulates a non-selective cation channel (NSCC) in neocortical nerve terminals via an unknown [Ca(2+)](o) sensor. Here, we identify the first component in a presynaptic calcium signaling pathway.By combining genetic and pharmacological approaches with direct patch-clamp recordings from small acutely isolated neocortical nerve terminals we identify the extracellular calcium sensor. Our results show that the calcium-sensing receptor (CaSR), a previously identified G-protein coupled receptor that is the mainstay in serum calcium homeostasis, is the extracellular calcium sensor in these acutely dissociated nerve terminals. The NSCC currents from reduced function mutant CaSR mice were less sensitive to changes in [Ca(2+)](o) than wild-type. Calindol, an allosteric CaSR agonist, reduced NSCC currents in direct terminal recordings in a dose-dependent and reversible manner. In contrast, glutamate and GABA did not affect the NSCC currents.Our experiments identify CaSR as the first component in the [Ca(2+)](o) sensor-NSCC signaling pathway in neocortical terminals. Decreases in [Ca(2+)](o) will depress synaptic transmission because of the exquisite sensitivity of transmitter release to [Ca(2+)](o) following its entry via voltage-activated Ca(2+) channels. CaSR may detects such falls in [Ca(2+)](o) and increase action potential duration by increasing NSCC activity, thereby attenuating the impact of decreases in [Ca(2+)](o) on release probability. CaSR is positioned to detect the dynamic changes of [Ca(2+)](o) and provide presynaptic feedback that will alter brain excitability

    Soil erosion modelling: A bibliometric analysis

    Get PDF
    Soil erosion can present a major threat to agriculture due to loss of soil, nutrients, and organic carbon. Therefore, soil erosion modelling is one of the steps used to plan suitable soil protection measures and detect erosion hotspots. A bibliometric analysis of this topic can reveal research patterns and soil erosion modelling characteristics that can help identify steps needed to enhance the research conducted in this field. Therefore, a detailed bibliometric analysis, including investigation of collaboration networks and citation patterns, should be conducted. The updated version of the Global Applications of Soil Erosion Modelling Tracker (GASEMT) database contains information about citation characteristics and publication type. Here, we investigated the impact of the number of authors, the publication type and the selected journal on the number of citations. Generalized boosted regression tree (BRT) modelling was used to evaluate the most relevant variables related to soil erosion modelling. Additionally, bibliometric networks were analysed and visualized. This study revealed that the selection of the soil erosion model has the largest impact on the number of publication citations, followed by the modelling scale and the publication\u27s CiteScore. Some of the other GASEMT database attributes such as model calibration and validation have negligible influence on the number of citations according to the BRT model. Although it is true that studies that conduct calibration, on average, received around 30% more citations, than studies where calibration was not performed. Moreover, the bibliographic coupling and citation networks show a clear continental pattern, although the co-authorship network does not show the same characteristics. Therefore, soil erosion modellers should conduct even more comprehensive review of past studies and focus not just on the research conducted in the same country or continent. Moreover, when evaluating soil erosion models, an additional focus should be given to field measurements, model calibration, performance assessment and uncertainty of modelling results. The results of this study indicate that these GASEMT database attributes had smaller impact on the number of citations, according to the BRT model, than anticipated, which could suggest that these attributes should be given additional attention by the soil erosion modelling community. This study provides a kind of bibliographic benchmark for soil erosion modelling research papers as modellers can estimate the influence of their paper
    corecore