412 research outputs found

    Mars surface radiation exposure for solar maximum conditions and 1989 solar proton events

    Get PDF
    The Langley heavy-ion/nucleon transport code, HZETRN, and the high-energy nucleon transport code, BRYNTRN, are used to predict the propagation of galactic cosmic rays (GCR's) and solar flare protons through the carbon dioxide atmosphere of Mars. Particle fluences and the resulting doses are estimated on the surface of Mars for GCR's during solar maximum conditions and the Aug., Sep., and Oct. 1989 solar proton events. These results extend previously calculated surface estimates for GCR's at solar minimum conditions and the Feb. 1956, Nov. 1960, and Aug. 1972 solar proton events. Surface doses are estimated with both a low-density and a high-density carbon dioxide model of the atmosphere for altitudes of 0, 4, 8, and 12 km above the surface. A solar modulation function is incorporated to estimate the GCR dose variation between solar minimum and maximum conditions over the 11-year solar cycle. By using current Mars mission scenarios, doses to the skin, eye, and blood-forming organs are predicted for short- and long-duration stay times on the Martian surface throughout the solar cycle

    Periodic report, design of a strut supported turbine vane with a wire-form porous shell

    Get PDF
    Thermal and structural design analysis of strut supported, porous wall turbine van

    A coupled radiative-convective-photochemical model of the stratosphere

    Get PDF
    A one-dimensional atmospheric model is described. The neutral photochemical processes of the troposphere and stratosphere are presented by a reaction set of 87 kinetic processes and 28 photolytic reactions, with vertical transport being taken into account by an eddy diffusion parameter. The vertical temperature profiles are coupled with the chemical calculations by means of a radiative-convective code. The model has the capability of including effects of multiple scattering and diurnal variations in species concentrations. The numerical solution methodology is described in detail, and current input data are given along with results obtained in a sample calculation

    Galactic cosmic ray exposure estimates for SAGE-3 mission in polar orbit

    Get PDF
    An analysis of the effects of galactic cosmic ray (GCR) exposures on charge-coupled devices (CCDs) was performed for the SAGE-III 5-year mission in sun-synchronous orbit between 1996 and 2001. A detailed environment model used in conjunction with a geomagnetic vertical cut-off code provides the predicted 5-year fluence of GCR ions. A computerized solid model of the spacecraft was used to define the effective shield thickness distribution around the CCD detector. The particle fluences at the detector location are calculated with the Langley heavy-ion transport code, and these fluences are used in conjunction with estimated nuclear stopping powers to evaluate dosimetric quantities related to the detector degradation. A previous study analyzing effects of trapped particle and solar flare protons indicated an approximate 20 percent reduction in detector sensitivity for the mission. The galactic cosmic ray contribution was thought to be relatively small and therefore was not previously analyzed. The present study provides quantification of the GCR effects, which are found to contribute less than 1 percent of the total environment degradation

    Integrating Soft Skills Through Active Learning In The Management Classroom

    Get PDF
    This article discusses how active learning can be used to develop soft skills required by managers of contemporary organizations. Findings from course materials developed in response to business and industry demand for increased focus on soft skills are examined using an emerging population, first generation college students in institutions of higher education.    &nbsp

    LTE Spectrum Sharing Research Testbed: Integrated Hardware, Software, Network and Data

    Full text link
    This paper presents Virginia Tech's wireless testbed supporting research on long-term evolution (LTE) signaling and radio frequency (RF) spectrum coexistence. LTE is continuously refined and new features released. As the communications contexts for LTE expand, new research problems arise and include operation in harsh RF signaling environments and coexistence with other radios. Our testbed provides an integrated research tool for investigating these and other research problems; it allows analyzing the severity of the problem, designing and rapidly prototyping solutions, and assessing them with standard-compliant equipment and test procedures. The modular testbed integrates general-purpose software-defined radio hardware, LTE-specific test equipment, RF components, free open-source and commercial LTE software, a configurable RF network and recorded radar waveform samples. It supports RF channel emulated and over-the-air radiated modes. The testbed can be remotely accessed and configured. An RF switching network allows for designing many different experiments that can involve a variety of real and virtual radios with support for multiple-input multiple-output (MIMO) antenna operation. We present the testbed, the research it has enabled and some valuable lessons that we learned and that may help designing, developing, and operating future wireless testbeds.Comment: In Proceeding of the 10th ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization (WiNTECH), Snowbird, Utah, October 201

    From/To: Clyde Nealy (Chalk\u27s reply filed first)

    Get PDF
    corecore