17 research outputs found

    The Cancer Genomics Resource List 2014

    Get PDF
    Context.— Genomic sequencing for cancer is offered by commercial for-profit laboratories, independent laboratory networks, and laboratories in academic medical centers and integrated health networks. The variability among the tests has created a complex, confusing environment. Objective.— To address the complexity, the Personalized Health Care (PHC) Committee of the College of American Pathologists proposed the development of a cancer genomics resource list (CGRL). The goal of this resource was to assist the laboratory pathology and clinical oncology communities. Design.— The PHC Committee established a working group in 2012 to address this goal. The group consisted of site-specific experts in cancer genetic sequencing. The group identified current next-generation sequencing (NGS)–based cancer tests and compiled them into a usable resource. The genes were annotated by the working group. The annotation process drew on published knowledge, including public databases and the medical literature. Results.— The compiled list includes NGS panels offered by 19 laboratories or vendors, accompanied by annotations. The list has 611 different genes for which NGS-based mutation testing is offered. Surprisingly, of these 611 genes, 0 genes were listed in every panel, 43 genes were listed in 4 panels, and 54 genes were listed in 3 panels. In addition, tests for 393 genes were offered by only 1 or 2 institutions. Table 1 provides an example of gene mutations offered for breast cancer genomic testing with the annotation as it appears in the CGRL 2014. Conclusions.— The final product, referred to as the Cancer Genomics Resource List 2014, is available as supplemental digital content

    Tumor mutational burden and PTEN alterations as molecular correlates of response to PD-1/L1 blockade in metastatic triple-negative breast cancer

    Get PDF
    Purpose: Few patients with metastatic triple-negative breast cancer (mTNBC) benefit from immune checkpoint inhibitors (ICI). On the basis of immunotherapy response correlates in other cancers, we evaluated whether high tumor mutational burden (TMB) ≥10 nonsynonymous mutations/megabase and PTEN alterations, defined as nonsynonymous mutations or 1 or 2 copy deletions, were associated with clinical benefit to anti-PD-1/L1 therapy in mTNBC. Experimental design: We identified patients with mTNBC, who consented to targeted DNA sequencing and were treated with ICIs on clinical trials between April 2014 and January 2019 at Dana-Farber Cancer Institute (Boston, MA). Objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) were correlated with tumor genomic features. Results: Sixty-two women received anti-PD-1/L1 inhibitors alone (23%) or combined with targeted therapy (19%) or chemotherapy (58%). High TMB (18%) was associated with significantly longer PFS (12.5 vs. 3.7 months; P = 0.04), while PTEN alterations (29%) were associated with significantly lower ORR (6% vs. 48%; P = 0.01), shorter PFS (2.3 vs. 6.1 months; P = 0.01), and shorter OS (9.7 vs. 20.5 months; P = 0.02). Multivariate analyses confirmed that these associations were independent of performance status, prior lines of therapy, therapy regimen, and visceral metastases. The survival associations were additionally independent of PD-L1 in patients with known PD-L1 and were not found in mTNBC cohorts treated with chemotherapy (n = 90) and non-ICI regimens (n = 169). Conclusions: Among patients with mTNBC treated with anti-PD-1/L1 therapies, high TMB and PTEN alterations were associated with longer and shorter survival, respectively. These observations warrant validation in larger datasets

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine
    corecore