351 research outputs found

    Capture and Indirect Detection of Inelastic Dark Matter

    Full text link
    We compute the capture rate for Dark Matter in the Sun for models where the dominant interaction with nuclei is inelastic -- the Dark Matter up-scatters to a nearby dark "partner" state with a small splitting of order a 100 keV. Such models have previously been shown to be compatible with DAMA/LIBRA data, as well as data from all other direct detection experiments. The kinematics of inelastic Dark Matter ensures that the dominant contribution to capture occurs from scattering off of iron. We give a prediction for neutrino rates for current and future neutrino telescopes based on the results from current direct detection experiments. Current bounds from Super--Kamiokande and IceCube-22 significantly constrain these models, assuming annihilations are into two-body Standard Model final states, such as W+W-, t-tbar, b-bbar or tau+tau-. Annihilations into first and second generation quarks and leptons are generally allowed, as are annihilations into new force carriers which decay dominantly into e+e-, mu+mu- and pi+pi-.Comment: 25 pages, 9 figures. Typos corrected. Better treatment of SK bounds. Basic conclusions unchange

    ENERGETICS OF LOWER EXTREMITY MOVEMENTS PREDICTED USING AN EMG-DRIVEN MUSCLE MODEL

    Get PDF
    An EMG-driven muscle model is described and applied to the analysis of a loaded squat movement, vertical jumping performance, and walking, jogging and running gait. The main findings are: (i) for the up phase of the loaded squat the monoarticular hip and knee extensors account for approximately 80% of the work done by the muscle tendon complexes; (ii) differences in movement amplitude of the whole body centre of gravity between the countermovement jump and the squat jump may be explained by differences in muscle-tendon dynamics; and (iii) the amount of mechanical energy transferred between joints via biarticular muscles during the support phase of gait increases as a function of gait speed

    An Association of Cancer Physicians' strategy for improving services and outcomes for cancer patients.

    Get PDF
    The Association of Cancer Physicians in the United Kingdom has developed a strategy to improve outcomes for cancer patients and identified the goals and commitments of the Association and its members.The ACP is very grateful to all of its members who have expressed views on the development of the strategy and to the sponsors of our workshops and publications, especially Cancer Research UK and Macmillan Cancer SupportThis is the final version of the article. It was first available from Cancer Intelligence via http://dx.doi.org/10.3332/ecancer.2016.60

    Computer modelling of connectivity change suggests epileptogenesis mechanisms in idiopathic generalised epilepsy

    Full text link
    Patients with idiopathic generalised epilepsy (IGE) typically have normal conventional magnetic resonance imaging (MRI), hence MRI based diagnosis is challenging. Anatomical abnormalities underlying brain dysfunctions in IGE are unclear and their relation to the pathomechanisms of epileptogenesis is poorly understood. In this study, we applied connectometry, an advanced quantitative neuroimaging technique for investigating localised changes in white-matter tissue. Analysing white matter structures of 32 subjects we incorporated our findings in a computational model of seizure dynamics to suggest a plausible mechanism of epileptogenesis. Patients with IGE have significant bilateral alterations in major white-matter fascicles. In the cingulum, fornix, and superior longitudinal fasciculus, tract integrity is compromised, whereas in specific parts of tracts between thalamus and the precentral gyrus, tract integrity is enhanced in patients. Combining these alterations in a logistic regression model, we computed the decision boundary that discriminated patients and controls. The computational model, informed with the findings on the tract abnormalities, specifically highlighted the importance of enhanced cortico-reticular connections along with impaired cortico-cortical connections in inducing pathological seizure-like dynamics. We emphasise taking directionality of brain connectivity into consideration towards understanding the pathological mechanisms; this is possible by combining neuroimaging and computational modelling. Our imaging evidence of structural alterations suggest the loss of cortico-cortical and enhancement of cortico-thalamic fibre integrity in IGE. We further suggest that impaired connectivity from cortical regions to the thalamic reticular nucleus offers a therapeutic target for selectively modifying the brain circuit for reversing the mechanisms leading to epileptogenesis

    Detectable Clonal Mosaicism from Birth to Old Age and its Relationship to Cancer

    Get PDF
    Clonal mosaicism for large chromosomal anomalies (duplications, deletions and uniparental disomy) was detected using SNP microarray data from over 50,000 subjects recruited for genome-wide association studies. This detection method requires a relatively high frequency of cells (>5–10%) with the same abnormal karyotype (presumably of clonal origin) in the presence of normal cells. The frequency of detectable clonal mosaicism in peripheral blood is low (<0.5%) from birth until 50 years of age, after which it rises rapidly to 2–3% in the elderly. Many of the mosaic anomalies are characteristic of those found in hematological cancers and identify common deleted regions that pinpoint the locations of genes previously associated with hematological cancers. Although only 3% of subjects with detectable clonal mosaicism had any record of hematological cancer prior to DNA sampling, those without a prior diagnosis have an estimated 10-fold higher risk of a subsequent hematological cancer (95% confidence interval = 6–18)
    corecore