11,629 research outputs found
Study of a heat rejection system using capillary pumping
Results of an analytical study investigating the application of capillary pumping to the heat rejection loop of an advanced Rankine cycle power conversion system are presented. The feasibility of the concept of capillary pumping as an alternate to electromagnetic pumping is analytically demonstrated. Capillary pumping is shown to provide a potential for weight and electrical power saving and reliability through the use of redundant systems. A screen wick pump design with arterial feed lines was analytically developed. Advantages of this design are high thermodynamic and hydrodynamic efficiency, which provide a lightweight easily packaged system. Operational problems were identified which must be solved for successful application of capillary pumping. The most important are the development of start up and shutdown procedures, and development of a means of keeping noncondensibles from the system and of earth-bound testing procedures
On shocks driven by high-mass planets in radiatively inefficient disks. I. Two-dimensional global disk simulations
Recent observations of gaps and non-axisymmetric features in the dust
distributions of transition disks have been interpreted as evidence of embedded
massive protoplanets. However, comparing the predictions of planet-disk
interaction models to the observed features has shown far from perfect
agreement. This may be due to the strong approximations used for the
predictions. For example, spiral arm fitting typically uses results that are
based on low-mass planets in an isothermal gas. In this work, we describe
two-dimensional, global, hydrodynamical simulations of disks with embedded
protoplanets, with and without the assumption of local isothermality, for a
range of planet-to-star mass ratios 1-10 M_jup for a 1 M_sun star. We use the
Pencil Code in polar coordinates for our models. We find that the inner and
outer spiral wakes of massive protoplanets (M>5 M_jup) produce significant
shock heating that can trigger buoyant instabilities. These drive sustained
turbulence throughout the disk when they occur. The strength of this effect
depends strongly on the mass of the planet and the thermal relaxation
timescale; for a 10 M_jup planet embedded in a thin, purely adiabatic disk, the
spirals, gaps, and vortices typically associated with planet-disk interactions
are disrupted. We find that the effect is only weakly dependent on the initial
radial temperature profile. The spirals that form in disks heated by the
effects we have described may fit the spiral structures observed in transition
disks better than the spirals predicted by linear isothermal theory.Comment: 10 pages, 8 figures. ApJ, accepte
The Regulation of the CNS Innate Immune Response Is Vital for the Restoration of Tissue Homeostasis (Repair) after Acute Brain Injury: A Brief Review
Neurons and glia respond to acute injury by participating in the CNS innate immune response. This involves the recognition and clearance of “not self ” pathogens and “altered self ” apoptotic cells. Phagocytic receptors (CD14, CD36, TLR–4) clear “not self” pathogens; neurons and glia express “death signals” to initiate apoptosis in T cells.The complement opsonins C1q, C3, and iC3b facilitate the clearance of apoptotic cells by interacting with CR3 and CR4 receptors. Apoptotic cells are also cleared by the scavenger receptors CD14, Prs-R, TREM expressed by glia. Serpins also expressed by glia counter the neurotoxic effects of thrombin and other systemic proteins that gain entry to the CNS following injury. Complement pathway and T cell activation are both regulated by complement regulatory proteins expressed by glia and neurons. CD200 and CD47 are NIRegs expressed by neurons as “don't eat me” signals and they inhibit microglial activity preventing host cell attack. Neural stem cells regulate T cell activation, increase the Treg population, and suppress proinflammatory cytokine expression. Stem cells also interact with the chemoattractants C3a, C5a, SDF-1, and thrombin to promote stem cell migration into damaged tissue to support tissue homeostasis
Bringing closure to microlensing mass measurement
Interferometers offer multiple methods for studying microlensing events and
determining the properties of the lenses. We investigate the study of
microlensing events with optical interferometers, focusing on narrow-angle
astrometry, visibility, and closure phase. After introducing the basics of
microlensing and interferometry, we derive expressions for the signals in each
of these three channels. For various forecasts of the instrumental performance,
we discuss which method provides the best means of measuring the lens angular
Einstein radius theta_E, a prerequisite for determining the lens mass. If the
upcoming generation of large-aperture, AO-corrected long baseline
interferometers (e.g. VLTI, Keck, OHANA) perform as well as expected, theta_E
may be determined with signal-to-noise greater than 10 for all bright events.
We estimate that roughly a dozen events per year will be sufficiciently bright
and have long enough durations to allow the measurement of the lens mass and
distance from the ground. We also consider the prospects for a VLTI survey of
all bright lensing events using a Fisher matrix analysis, and find that even
without individual masses, interesting constraints may be placed on the bulge
mass function, although large numbers of events would be required.Comment: 23 pages, aastex, submitted to Ap
- …