11,629 research outputs found

    Study of a heat rejection system using capillary pumping

    Get PDF
    Results of an analytical study investigating the application of capillary pumping to the heat rejection loop of an advanced Rankine cycle power conversion system are presented. The feasibility of the concept of capillary pumping as an alternate to electromagnetic pumping is analytically demonstrated. Capillary pumping is shown to provide a potential for weight and electrical power saving and reliability through the use of redundant systems. A screen wick pump design with arterial feed lines was analytically developed. Advantages of this design are high thermodynamic and hydrodynamic efficiency, which provide a lightweight easily packaged system. Operational problems were identified which must be solved for successful application of capillary pumping. The most important are the development of start up and shutdown procedures, and development of a means of keeping noncondensibles from the system and of earth-bound testing procedures

    On shocks driven by high-mass planets in radiatively inefficient disks. I. Two-dimensional global disk simulations

    Get PDF
    Recent observations of gaps and non-axisymmetric features in the dust distributions of transition disks have been interpreted as evidence of embedded massive protoplanets. However, comparing the predictions of planet-disk interaction models to the observed features has shown far from perfect agreement. This may be due to the strong approximations used for the predictions. For example, spiral arm fitting typically uses results that are based on low-mass planets in an isothermal gas. In this work, we describe two-dimensional, global, hydrodynamical simulations of disks with embedded protoplanets, with and without the assumption of local isothermality, for a range of planet-to-star mass ratios 1-10 M_jup for a 1 M_sun star. We use the Pencil Code in polar coordinates for our models. We find that the inner and outer spiral wakes of massive protoplanets (M>5 M_jup) produce significant shock heating that can trigger buoyant instabilities. These drive sustained turbulence throughout the disk when they occur. The strength of this effect depends strongly on the mass of the planet and the thermal relaxation timescale; for a 10 M_jup planet embedded in a thin, purely adiabatic disk, the spirals, gaps, and vortices typically associated with planet-disk interactions are disrupted. We find that the effect is only weakly dependent on the initial radial temperature profile. The spirals that form in disks heated by the effects we have described may fit the spiral structures observed in transition disks better than the spirals predicted by linear isothermal theory.Comment: 10 pages, 8 figures. ApJ, accepte

    The Regulation of the CNS Innate Immune Response Is Vital for the Restoration of Tissue Homeostasis (Repair) after Acute Brain Injury: A Brief Review

    Get PDF
    Neurons and glia respond to acute injury by participating in the CNS innate immune response. This involves the recognition and clearance of “not self ” pathogens and “altered self ” apoptotic cells. Phagocytic receptors (CD14, CD36, TLR–4) clear “not self” pathogens; neurons and glia express “death signals” to initiate apoptosis in T cells.The complement opsonins C1q, C3, and iC3b facilitate the clearance of apoptotic cells by interacting with CR3 and CR4 receptors. Apoptotic cells are also cleared by the scavenger receptors CD14, Prs-R, TREM expressed by glia. Serpins also expressed by glia counter the neurotoxic effects of thrombin and other systemic proteins that gain entry to the CNS following injury. Complement pathway and T cell activation are both regulated by complement regulatory proteins expressed by glia and neurons. CD200 and CD47 are NIRegs expressed by neurons as “don't eat me” signals and they inhibit microglial activity preventing host cell attack. Neural stem cells regulate T cell activation, increase the Treg population, and suppress proinflammatory cytokine expression. Stem cells also interact with the chemoattractants C3a, C5a, SDF-1, and thrombin to promote stem cell migration into damaged tissue to support tissue homeostasis

    Bringing closure to microlensing mass measurement

    Get PDF
    Interferometers offer multiple methods for studying microlensing events and determining the properties of the lenses. We investigate the study of microlensing events with optical interferometers, focusing on narrow-angle astrometry, visibility, and closure phase. After introducing the basics of microlensing and interferometry, we derive expressions for the signals in each of these three channels. For various forecasts of the instrumental performance, we discuss which method provides the best means of measuring the lens angular Einstein radius theta_E, a prerequisite for determining the lens mass. If the upcoming generation of large-aperture, AO-corrected long baseline interferometers (e.g. VLTI, Keck, OHANA) perform as well as expected, theta_E may be determined with signal-to-noise greater than 10 for all bright events. We estimate that roughly a dozen events per year will be sufficiciently bright and have long enough durations to allow the measurement of the lens mass and distance from the ground. We also consider the prospects for a VLTI survey of all bright lensing events using a Fisher matrix analysis, and find that even without individual masses, interesting constraints may be placed on the bulge mass function, although large numbers of events would be required.Comment: 23 pages, aastex, submitted to Ap
    corecore