244 research outputs found

    Antibacterial effect of Jordanian propolis and isolated flavonoids against human pathogenic bacteria

    Get PDF
    Propolis is a natural product widely consumed in folk medicine. The present study was carried out to investigate the antibacterial activity of Jordanian propolis, collected from two locations with two different dominant floras (Type1; Pine trees and Type ll; Oak trees). Zones of inhibition and minimum inhibitory concentrations (MICs) were determined on methicillin resistant Staphylococcus aureus (MRSA), multidrug resistant Escherichia coli and standard strains of both bacteria. Propolis Type I and Type II showed antibacterial activity against MRSA (MIC 4.69 and 18.75 μg ml-1, respectively). Crude propolis from Type I showed higher antibacterial activity than Type II against the tested bacteria. Three pure phenolic compounds (three flavonoids) namely, pinobanksin-3-O-acetate, pinocemberin and chrysin, were isolated from fractions I-2 and I-4, and screened in vitro for antibacterial activity. Pinobanksin-3-O-acetate and pinocembrin exhibited antibacterial activity especially against MRSA, while chrysin was only active against standard S. aureus. This is the first report that shows in vitro antibacterial activity of isolated flavonoids from Jordanian propolis against standard and resistant strains of E. coli and MRSA. Overall, results of this study highlight the important role of propolis botanical source on the antibacterial activity of such natural material which might affect its medical applications.Keywords: Antibacterial activity, human pathogens, flavonoids, propolis, methicillin resistant Staphylococcus aureus, Escherichia coliAfrican Journal of Biotechnology Vol. 9(36), pp. 5966-5974, 6 September, 201

    Nucleolar Accumulation of RNA Binding Proteins Induced by ActinomycinD Is Functional in Trypanosoma cruzi and Leishmania mexicana but Not in T. brucei

    Get PDF
    We have recently shown in T. cruzi that a group of RNA Binding Proteins (RBPs), involved in mRNA metabolism, are accumulated into the nucleolus in response to Actinomycin D (ActD) treatment. In this work, we have extended our analysis to other members of the trypanosomatid lineage. In agreement with our previous study, the mechanism seems to be conserved in L. mexicana, since both endogenous RBPs and a transgenic RBP were relocalized to the nucleolus in parasites exposed to ActD. In contrast, in T. brucei, neither endogenous RBPs (TbRRM1 and TbPABP2) nor a transgenic RBP from T. cruzi were accumulated into the nucleolus under such treatment. Interestingly, when a transgenic TbRRM1was expressed in T. cruzi and the parasites exposed to ActD, TbRRM1 relocated to the nucleolus, suggesting that it contains the necessary sequence elements to be targeted to the nucleolus. Together, both experiments demonstrate that the mechanism behind nucleolar localization of RBPs, which is present in T. cruzi and L. mexicana, is not functional in T. brucei, suggesting that it has been lost or retained differentially during the evolution of the trypanosomatid lineage

    Ankyrin-B dysfunction predisposes to arrhythmogenic cardiomyopathy and is amenable to therapy

    Get PDF
    Arrhythmogenic cardiomyopathy (ACM) is an inherited arrhythmia syndrome characterized by severe structural and electrical cardiac phenotypes, including myocardial fibrofatty replacement and sudden cardiac death. Clinical management of ACM is largely palliative, owing to an absence of therapies that target its underlying pathophysiology, which stems partially from our limited insight into the condition. Following identification of deceased ACM probands possessing ANK2 rare variants and evidence of ankyrin-B loss of function on cardiac tissue analysis, an ANK2 mouse model was found to develop dramatic structural abnormalities reflective of human ACM, including biventricular dilation, reduced ejection fraction, cardiac fibrosis, and premature death. Desmosomal structure and function appeared preserved in diseased human and murine specimens in the presence of markedly abnormal \u3b2-catenin expression and patterning, leading to identification of a previously unknown interaction between ankyrin-B and \u3b2-catenin. A pharmacological activator of the WNT/\u3b2-catenin pathway, SB-216763, successfully prevented and partially reversed the murine ACM phenotypes. Our findings introduce what we believe to be a new pathway for ACM, a role of ankyrin-B in cardiac structure and signaling, a molecular link between ankyrin-B and \u3b2-catenin, and evidence for targeted activation of the WNT/\u3b2-catenin pathway as a potential treatment for this disease

    Transcriptional signature of islet neogenesis-associated protein peptide-treated rat pancreatic islets reveals induction of novel long non-coding RNAs

    Get PDF
    BackgroundDiabetes mellitus is characterized by chronic hyperglycemia with loss of β-cell function and mass. An attractive therapeutic approach to treat patients with diabetes in a non-invasive way is to harness the innate regenerative potential of the pancreas. The Islet Neogenesis-Associated Protein pentadecapeptide (INGAP-PP) has been shown to induce β-cell regeneration and improve their function in rodents. To investigate its possible mechanism of action, we report here the global transcriptional effects induced by the short-term INGAP-PP in vitro treatment of adult rat pancreatic islets.Methods and findingsRat pancreatic islets were cultured in vitro in the presence of INGAP-PP for 4 days, and RNA-seq was generated from triplicate treated and control islet samples. We performed a de novo rat gene annotation based on the alignment of RNA-seq reads. The list of INGAP-PP-regulated genes was integrated with epigenomic data. Using the new gene annotation generated in this work, we quantified RNA-seq data profiled in INS-1 cells treated with IL1β, IL1β+Calcipotriol (a vitamin D agonist) or vehicle, and single-cell RNA-seq data profiled in rat pancreatic islets. We found 1,669 differentially expressed genes by INGAP-PP treatment, including dozens of previously unannotated rat transcripts. Genes differentially expressed by the INGAP-PP treatment included a subset of upregulated transcripts that are associated with vitamin D receptor activation. Supported by epigenomic and single-cell RNA-seq data, we identified 9 previously unannotated long noncoding RNAs (lncRNAs) upregulated by INGAP-PP, some of which are also differentially regulated by IL1β and vitamin D in β-cells. These include Ri-lnc1, which is enriched in mature β-cells.ConclusionsOur results reveal the transcriptional program that could explain the enhancement of INGAP-PP-mediated physiological effects on β-cell mass and function. We identified novel lncRNAs that are induced by INGAP-PP in rat islets, some of which are selectively expressed in pancreatic β-cells and downregulated by IL1β treatment of INS-1 cells. Our results suggest a relevant function for Ri-lnc1 in β-cells. These findings are expected to provide the basis for a deeper understanding of islet translational results from rodents to humans, with the ultimate goal of designing new therapies for people with diabetes

    Transthyretin Protects against A-Beta Peptide Toxicity by Proteolytic Cleavage of the Peptide: A Mechanism Sensitive to the Kunitz Protease Inhibitor

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of amyloid β-peptide (A-Beta) in the brain. Transthyretin (TTR) is a tetrameric protein of about 55 kDa mainly produced in the liver and choroid plexus of the brain. The known physiological functions of TTR are the transport of thyroid hormone T4 and retinol, through binding to the retinol binding protein. TTR has also been established as a cryptic protease able to cleave ApoA-I in vitro. It has been described that TTR is involved in preventing A-Beta fibrilization, both by inhibiting and disrupting A-Beta fibrils, with consequent abrogation of toxicity. We further characterized the nature of the TTR/A-Beta interaction and found that TTR, both recombinant or isolated from human sera, was able to proteolytically process A-Beta, cleaving the peptide after aminoacid residues 1, 2, 3, 10, 13, 14,16, 19 and 27, as determined by mass spectrometry, and reversed phase chromatography followed by N-terminal sequencing. A-Beta peptides (1–14) and (15–42) showed lower amyloidogenic potential than the full length counterpart, as assessed by thioflavin binding assay and ultrastructural analysis by transmission electron microscopy. A-Beta cleavage by TTR was inhibited in the presence of an αAPP peptide containing the Kunitz Protease Inhibitor (KPI) domain but not in the presence of the secreted αAPP derived from the APP isoform 695 without the KPI domain. TTR was also able to degrade aggregated forms of A-Beta peptide. Our results confirmed TTR as a protective molecule in AD, and prompted A-Beta proteolysis by TTR as a protective mechanism in this disease. TTR may prove to be a useful therapeutic agent for preventing or retarding the cerebral amyloid plaque formation implicated in AD pathology

    Integrated continuous process design for crystallisation, spherical agglomeration, and filtration of lovastatin

    Get PDF
    Purpose This work seeks to improve the particle processability of needle-like lovastatin crystals and develop a small-footprint continuous MicroFactory for its production. Methods General conditions for optimal spherical agglomeration of lovastatin crystals and subsequent product isolation are developed, first as batch processes, and then transferred to continuous MicroFactory operation. Results Methyl isobutyl ketone is a suitable bridging liquid for the spherical agglomeration of lovastatin. Practical challenges including coupling unit operations and solvent systems; mismatched flow rates and inconsistent suspension solid loading were resolved. The successful continuous production of lovastatin spherical agglomerates (D50 = 336 µm) was achieved. Spherical agglomeration increased the density of the bulk lovastatin powder and improved product flowability from poor to good, whilst maintaining lovastatin tablet performance. Conclusion A continuous, integrated MicroFactory for the crystallisation, spherical agglomeration, and filtration of lovastatin is presented with improved product particle processability. Up to 16,800 doses of lovastatin (60 mg) can be produced per day using a footprint of 23 m2
    • …
    corecore