39 research outputs found

    First experiences with the Landsat-8 aquatic reflectance product: evaluation of the regional and ocean color algorithms in a coastal environment

    Get PDF
    Since the launch of the Landsat-8 (L8) Operational Land Imager (OLI) on February 11, 2013, there has been a continuous effort to produce reliable ocean color products by taking the advantages of its medium spatial resolution (30 m) and higher Signal to Noise Ratio (SNR). A Provisional Aquatic Reflectance product for the L8 OLI (L8PAR) has been recently released to the public to explore its potential for ocean color applications. This study used a six-year data record of L8 for development of a regionally tuned algorithm (RTA20) for estimating Chlorophyll-a (Chl-a) concentrations around the complex coastal environment of Hong Kong, and is the first to report the usability of the L8PAR product for coastal areas. Furthermore, this study validated three previously developed algorithms, namely RTA16, RTA17 and RTA19, and two ocean color algorithms (OC2 and OC3) modified for L8 OLI by NASA’s Ocean Color group. Results indicate that the newly released L8PAR product has a high potential for estimating the coastal water Chl-a concentrations with higher detail and higher accuracy than previously. The RTA20 algorithm developed in this study outperformed the previous algorithms (RTA16, RTA17, RTA19, OC2 and OC3), e.g., with lower values for Root Mean Square Error (RMSE; 0.92 mg/m3), bias (−0.26 mg/m3) and mean ratio (1.29). Although inferior to the RTA20, the OC2 algorithm also performed well in terms of Pearson’s correlation coefficient (r; 0.84), slope (6.87) and intercept (−8.44) while for RTA20 the values for r, slope and intercept were 0.96, 0.77 and 0.27, respectively. This preliminary evaluation reveals that the OC2 algorithm can be used as an operational algorithm for L8 Chl-a product generation for global coastal areas while RTA20 can be used as a regional algorithm for the routine monitoring of Chl-a concentrations around the coastal areas of Hong Kong or for coastal areas with similar water quality elsewhere in the world

    A new simplified and robust Surface Reflectance Estimation Method (SREM) for use over diverse land surfaces using multi-sensor data

    Get PDF
    Surface reflectance (SR) estimation is the most critical pre-processing step for deriving geophysical parameters in multi-sensor remote sensing. Most state-of-the-art SR estimation methods, such as the vector version of the Second Simulation of the Satellite Signal in the Solar Spectrum (6SV) Radiative Transfer (RT) model, depend on accurate information on aerosol and atmospheric gases. In this study, a Simplified and Robust Surface Reflectance Estimation Method (SREM) based on the equations from 6SV RT model, without integrating information of aerosol particles and atmospheric gasses, is proposed and tested using Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper plus (ETM+), and Landsat 8 Operational Land Imager (OLI) data from 2000 to 2018. For evaluation purposes, (i) the SREM SR retrievals are validated against in-situ SR measurements collected by Analytical Spectral Devices (ASD) for the South Dakota State University (SDSU) site, USA (ii) cross-comparison between the SREM and Landsat spectral SR products, i.e., Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) and Landsat 8 Surface Reflectance Code (LaSRC), are conducted over 11 urban (2013-2018), 13 vegetated (2013-2018), and 11 desert/arid (2000 to 2018) sites located over different climatic zones at global scale, (iii) the performance of the SREM spectral SR retrievals for low to high aerosol loadings is evaluated, (iv) spatio-temporal cross-comparison is conducted for six Landsat paths/rows located in Asia, Africa, Europe, and the USA from 2013 to 2018 to consider a large variety of land surfaces and atmospheric conditions, (v) cross-comparison is also performed for the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and the Soil Adjusted Vegetation Index (SAVI) calculated from both the SREM and Landsat SR data, (vi) the SREM is also applied to the Sentinel-2A and Moderate Resolution Imaging Spectrometer (MODIS) data to explore its applicability, and (vii) errors in the SR retrievals are reported using the Mean Bias Error (MBE), Root Mean Squared Deviation (RMSD) and Mean Systematic Error (MSE). Results depict significant and strong positive Pearson’s correlation (r), small MBE, RMSD, and MSE for each spectral band against in-situ ASD data and Landsat (LEDAPS and LaSRC) SR products. Consistency in SREM performance against Sentinel-2A (r = 0.994, MBE = - 0.009, and RMSD = 0.014) and MODIS (r = 0.925, MBE = 0.007, and RMSD = 0.014) data suggests that SREM can be applied to other multispectral satellites data. Overall, the findings demonstrate the potential and promise of SREM for use over diverse surfaces and under varying atmospheric conditions using multi-sensor data on a global scale

    Comparison of machine learning algorithms for retrieval of water quality indicators in case-II waters: a case study of Hong Kong

    Get PDF
    Anthropogenic activities in coastal regions are endangering marine ecosystems. Coastal waters classified as case-II waters are especially complex due to the presence of different constituents. Recent advances in remote sensing technology have enabled to capture the spatiotemporal variability of the constituents in coastal waters. The present study evaluates the potential of remote sensing using machine learning techniques, for improving water quality estimation over the coastal waters of Hong Kong. Concentrations of suspended solids (SS), chlorophyll-a (Chl-a), and turbidity were estimated with several machine learning techniques including Artificial Neural Network (ANN), Random Forest (RF), Cubist regression (CB), and Support Vector Regression (SVR). Landsat (5,7,8) reflectance data were compared with in situ reflectance data to evaluate the performance of machine learning models. The highest accuracies of the water quality indicators were achieved by ANN for both, in situ reflectance data (89%-Chl-a, 93%-SS, and 82%-turbidity) and satellite data (91%-Chl-a, 92%-SS, and 85%-turbidity. The water quality parameters retrieved by the ANN model was further compared to those retrieved by “standard Case-2 Regional/Coast Colour” (C2RCC) processing chain model C2RCC-Nets. The root mean square errors (RMSEs) for estimating SS and Chl-a were 3.3 mg/L and 2.7 µg/L, respectively, using ANN, whereas RMSEs were 12.7 mg/L and 12.9 µg/L for suspended particulate matter (SPM) and Chl-a concentrations, respectively, when C2RCC was applied on Landsat-8 data. Relative variable importance was also conducted to investigate the consistency between in situ reflectance data and satellite data, and results show that both datasets are similar. The red band (wavelength ≈ 0.665 µm) and the product of red and green band (wavelength ≈ 0.560 µm) were influential inputs in both reflectance data sets for estimating SS and turbidity, and the ratio between red and blue band (wavelength ≈ 0.490 µm) as well as the ratio between infrared (wavelength ≈ 0.865 µm) and blue band and green band proved to be more useful for the estimation of Chl-a concentration, due to their sensitivity to high turbidity in the coastal waters. The results indicate that the NN based machine learning approaches perform better and, thus, can be used for improved water quality monitoring with satellite data in optically complex coastal waters

    Characteristics of Fine Particulate Matter (PM2.5) over urban, suburban and rural areas of Hong Kong

    Get PDF
    In urban areas, Fine Particulate Matter (PM2.5) associated with local vehicle emissions can cause respiratory and cardiorespiratory disease and increased mortality rates, but less in rural areas. However, Hong Kong may be a special case since the whole territory often suffers from regional haze from nearby mainland China, as well as local sources. Therefore, to understand which areas of Hong Kong may be affected by damaging levels of fine particulates, PM2.5 data were obtained from March 2005 to February 2009 for urban, suburban and rural air quality monitoring stations; namely Central (city area, commercial area, and urban populated area), Tsuen Wan (city area, commercial area, urban populated, and residential area), Tung Chung (suburban and residential area), Yuen Long (urban and residential area), and Tap Mun (remote rural area). To evaluate the relative contributions of regional and local pollution sources, the study aims to test the influence of weather conditions on PM2.5 concentrations. Thus meteorological parameters including temperature, relative humidity, wind speed, and wind directions were obtained from the Hong Kong Observatory.. The results showed that Hong Kong’s air quality is mainly affected by regional aerosol emissions, either transported from the land or ocean, as similar patterns of variations in PM2.5 concentrations were observed over urban, suburban, and rural areas of Hong Kong. Only slightly higher PM2.5 concentrations were observed over urban sites, such as Central, compared to suburban and rural sites, which could be attributed to local automobile emissions. Results showed that meteorological parameters have potential to explain 80% of the variability in daily mean PM2.5 concentrations at Yuen Long, 77% at Tung Chung, 72% at Central, 71% at Tsuen Wan, and 67% at Tap Mun during the spring to summer part of the year. The results provide not only a better understanding of the impact of regional long-distance transport of air pollutants on Hong Kong’s air quality but also a reference for future regional-scale collaboration on air quality management

    AEROsol generic classification using a novel Satellite remote sensing Approach (AEROSA)

    Get PDF
    Numerous studies (hereafter GA: general approach studies) have been made to classify aerosols into desert dust (DD), biomass-burning (BB), clean continental (CC), and clean maritime (CM) types using only aerosol optical depth (AOD) and Ångström exponent (AE). However, AOD represents the amount of aerosol suspended in the atmospheric column while the AE is a qualitative indicator of the size distribution of the aerosol estimated using AOD measurements at different wavelengths. Therefore, these two parameters do not provide sufficient information to unambiguously classify aerosols into these four types. Evaluation of the performance of GA classification applied to AErosol Robotic NETwork (AERONET) data, at sites for situations with known aerosol types, provides many examples where the GA method does not provide correct results. For example, a thin layer of haze was classified as BB and DD outside the crop burning and dusty seasons respectively, a thick layer of haze was classified as BB, and aerosols from known crop residue burning events were classified as DD, CC, and CM by the GA method. The results also show that the classification varies with the season, for example, the same range of AOD and AE were observed during a dust event in the spring (20th March 2012) and a smog event in the autumn (2nd November 2017). The results suggest that only AOD and AE cannot precisely classify the exact nature (i.e., DD, BB, CC, and CM) of aerosol types without incorporating more optical and physical properties. An alternative approach, AEROsol generic classification using a novel Satellite remote sensing Approach (AEROSA), is proposed to provide aerosol amount and size information using AOD and AE, respectively, from the Terra-MODIS (MODerate resolution Imaging Spectroradiometer) Collection 6.1 Level 2 combined Dark Target and Deep Blue (DTB) product and AERONET Version 3 Level 2.0 data. Although AEROSA is also based on AOD and AE, it does not claim the nature of aerosol types, instead providing information on aerosol amount and size. The purpose is to introduce AEROSA for those researchers who are interested in the generic classification of aerosols based on AOD and AE, without claiming the exact aerosol types such as DD, BB, CC, and CM. AEROSA not only provides 9 generic aerosol classes for all observations but can also accommodate variations in location and season, which GA aerosol types do not.</jats:p

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication

    Coastline Vulnerability Assessment through Landsat and Cubesats in a Coastal Mega City

    No full text
    According to the Intergovernmental Panel on Climate Change (IPCC), global mean sea levels may rise from 0.43 m to 0.84 m by the end of the 21st century. This poses a significant threat to coastal cities around the world. The shoreline of Karachi (a coastal mega city located in Southern Pakistan) is vulnerable mainly due to anthropogenic activities near the coast. Therefore, the present study investigates rates and susceptibility to shoreline change using a 76-year multi-temporal dataset (1942 to 2018) through the Digital Shoreline Analysis System (DSAS). Historical shoreline positions were extracted from the topographic sheets (1:250,000) of 1942 and 1966, the medium spatial resolution (30 m) multi-sensor Landsat images of 1976, 1990, 2002, 2011, and a high spatial resolution (3 m) Planet Scope image from 2018, along the 100 km coast of Karachi. The shoreline was divided into two zones, namely eastern (25 km) and western (29 km) zones, to track changes in development, movement, and dynamics of the shoreline position. The analysis revealed that 95% of transects drawn for the eastern zone underwent accretion (i.e., land reclamation) with a mean rate of 14 m/year indicating that the eastern zone faced rapid shoreline progression, with the highest rates due to the development of coastal areas for urban settlement. Similarly, 74% of transects drawn for the western zone experienced erosion (i.e., land loss) with a mean rate of &minus;1.15 m/year indicating the weathering and erosion of rocky and sandy beaches by marine erosion. Among the 25 km length of the eastern zone, 94% (23.5 km) of the shoreline was found to be highly vulnerable, while the western zone showed much more stable conditions due to anthropogenic inactivity. Seasonal hydrodynamic analysis revealed approximately a 3% increase in the average wave height during the summer monsoon season and a 1% increase for the winter monsoon season during the post-land reclamation era. Coastal protection and management along the Sindh coastal zone should be adopted to defend against natural wave erosion and the government must take measures to stop illegal sea encroachments

    Spatial and Temporal Variability of Open-Ocean Barrier Islands along the Indus Delta Region

    No full text
    Barrier islands (BIs) have been designated as the first line of defense for coastal human assets against rising sea level. Global mean sea level may rise from 0.21 to 0.83 m by the end of 21st century as predicted by the Intergovernmental Panel on Climate Change (IPCC). Although the Indus Delta covers an area of 41,440 km&#178; surrounded by a chain of BIs, this may result in an encroachment area of 3750 km2 in Indus Delta with each 1 m rise of sea level. This study has used a long-term (1976 to 2017) satellite data record to study the development, movement and dynamics of BIs located along the Indus Delta. For this purpose, imagery from Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), and Operational Land Imager (OLI) sensors was used. From all these sensors, the Near Infrared (NIR) band (0.7&#8315;0.9 &#181;m) was used for the delineation and extraction of the boundaries of 18 BIs. It was found that the area and magnitude of these BIs is so dynamic, and their movement is so great that changes in their positions and land areas have continuously been changing. Among these BIs, 38% were found to be vulnerable to oceanic factors, 37% were found to be partially vulnerable, 17% remained partially sustainable, and only 8% of these BIs sustained against the ocean controlling factors. The dramatic gain and loss in area of BIs is due to variant sediment budget transportation through number of floods in the Indus Delta and sea-level rise. Coastal protection and management along the Indus Delta should be adopted to defend against the erosive action of the ocean
    corecore